Exercise: Magnetic Field

Aim of the exercise:

- Define a dipole field which deviates the beam on a target
- Plot the field
- Visualize the effect of the field on the beam trajectory

Goal of the exercise

- Introduce a dipole field in order to deflect a given beam on a pre-defined target

Steps

- The beam, regions and scoring is pre-defined

- Note that all regions except the target are set to VACUUM (including the magnet)

- Exercise steps:

1. Activate a magnetic field in the pre-defined region called MAGNET (ASSIGNMA card)
2. Introduce a MGNFIELD card and define a B field such that:

a. the beam is deflected in the $\mathbf{x}-\mathbf{z}$ plane as illustrated in the figure (hint: the B field direction can be determined from the Lorentz force).
b. the deflection angle $\boldsymbol{\theta}$ is $\mathbf{2 5}$ deg; use the formula on slide 5 to determine the required $|B|$. Note that the magnet is $\mathrm{L}_{\mathbf{z}}=50 \mathrm{~cm}$ long in z -direction.
3. Verify that the field is correctly activated by plotting the field intensity and field vectors:
a. see lecture slides for instructions how to plot a field
b. make sure to chose an appropriate plotting plane which contains the field vectors
4. Run one cycle (1 primary) and plot the particle fluence in the $x-z$ plane
a. use the pre-defined USRBIN scoring in the Plot tab of Flair

Lorentz force

- Use following expression to determine which B field component needs to be set on the MGNFIELD card in order to deflect the beam on the target:

$$
\left(\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right)=q\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \times\left(\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right)=q\left(\begin{array}{l}
v_{y} B_{z}-v_{z} B_{y} \\
v_{z} B_{x}-v_{x} B_{z} \\
v_{x} B_{y}-v_{y} B_{x}
\end{array}\right)
$$

- $\left(F_{x}, F_{y}, F_{z}\right)=$ Lorentz force
- $q=$ Particle charge
- $\left(v_{x}, v_{y}, v_{z}\right)=$ Particle velocity
- $\left(B_{x}, B_{y}, B_{z}\right)=$ Magnetic field (magnetic flux density) components

Required $|B|$

- Use the following expression to determine the required $|B|$ in order to deviate the beam on the target:

$$
\frac{p[\mathrm{GeV} / \mathrm{c}]}{0.299792 Q[e]}=\frac{|B|[\mathrm{T}] L_{z}[\mathrm{~m}]}{\sin \theta}
$$

- $p=$ Particle momentum in $\mathrm{GeV} / \mathrm{c}$
- $Q=$ Particle charge (as multiple of elementary charges)
- $|B|=\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{z}}$ in Tesla
- $L_{z}=$ Length of the magnetic field in z-direction (i.e. in the original beam direction)
- $\theta=$ Deflection angle in rad

Note: this formula can be simply derived from the Lorentz force and applies for a homogenous dipole field with $L_{z}<R$, where R is the bending radius.

