## Exercise: Magnetic Field - Solution

Aim of the exercise:

- Define a dipole field which deviates the beam on a target
- Plot the field
- Visualize the effect of the field on the beam trajectory


## Exercise

- Introduce a dipole field in order to deflect a given beam on a pre-defined target



## B field direction

- The $B$ field is perpendicular to the plane of movement - hence only $B_{y}$ can be non-zero if the particle shall move in the $x-z$ plane:

$$
\left(\begin{array}{c}
F_{x} \\
0 \\
F_{z}
\end{array}\right)=q\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \times\left(\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right)=q\left(\begin{array}{c}
v_{y} B_{z}-v_{z} B_{y} \\
v_{z} B_{x}-v_{x} B_{z} \\
v_{x} B_{y}-v_{y} B_{x}
\end{array}\right)=q\left(\begin{array}{c}
-v_{z} B_{y} \\
0 \\
v_{x} B_{y}
\end{array}\right)
$$

- $\left(F_{x}, F_{y}, F_{z}\right)=$ Lorentz force
- $q=$ Particle charge
- $\left(v_{x}, v_{y}, v_{z}\right)=$ Particle velocity
- $\left(B_{x}, B_{y}, B_{z}\right)=$ Magnetic field components
- Protons are positively charged ( $\mathrm{q}>0$ ):
- As shown in the figure: $F_{x}>0$ and $F_{z} \leq 0$
- Since $v_{z}>0, v_{x} \geq 0, B_{y}$ must be negative



## Required $|B|$

- Required B field strength of a $\mathbf{5 0} \mathbf{~ c m}$ long dipole to deviate a $\mathbf{6 0 0} \mathbf{~ M e V} / \mathbf{c}$ proton beam by 25 deg:

$$
|B|[T]=\frac{0.6[\mathrm{GeV} / \mathrm{c}]}{0.299792 * 1[e] * 0.5[\mathrm{~m}]} \sin \left(\frac{25}{180} * \pi\right)=1.69164[T]
$$

## The cards

- ASSIGNMA (under "Media"):

- MGNFIELD (under "Transport"):

$$
\begin{array}{rc}
U \text { MGNFIELD } & \text { Max Ang (deg): } \\
\text { Bound Acc. (cm): } & \text { Min step (cm): } \\
\text { Bx: } 0.0 & \text { By: }-1.69164 \\
\text { Bz: } 0.0 \\
\hline
\end{array}
$$

## Plotting the field

- Since the B-field only has a y component, let's for example chose the $x$ - $y$ plane for plotting:


Particle fluence in $x-z$ plane



## Tracking accuracy (boundary crossing)

- (was not part of the exercise)
- Pay attention to accuracy vs tracking speed



