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High-Gradient Acceleration and Applications
Part 1 
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Overall objectives

The main objective of these two hours of lectures are to give you an taste of high-gradient 
accelerators. Some of the points we will address include:

• The CLIC project - features, performance demands  
• High-gradient acceleration – introduction, vacuum arcing
• Compact applications – Technology spin-out to fields beyond high-energy physics, in 

particular compact facilities, with a focus on FLASH therapy

Part of the lectures are seminar-like but I’ve tried to put in theory appetizers.

Please feel free to interrupt with questions!
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Introduction to CLIC 
Physics requirements drive accelerator technology development
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Linear colliders

Among the possible paths forward for accelerator-based high-energy physics are e+e- linear colliders.
• High-energy physics has historically advanced through the complementarity of lepton and hadron 

machines.
• An intrinsic advantage of a linear e+e- collider is that the collision energy is not limited by synchrotron 

radiation as in a ring. Synchrotron radiation power α E4.
• Technology challenge different from hadron collider – rf (radio frequency) systems rather than magnets.

Based on these considerations, e+e- linear collider designs and technology have been developed worldwide 
since the late 1980s.

Two main linear collider projects have emerged and survived:
• ILC – Based on superconducting rf (radio frequency) cavity acceleration. 250 GeV center of mass. 

International project with Japan as host. Long-standing effort to obtain approval. https://linearcollider.org/
• CLIC – Based on normal conducting high-gradient rf. 380 GeV first stage, extendable up to 3 TeV. 

International collaboration led by CERN. Now so-called plan B for CERN… http://clic.cern/

https://linearcollider.org/
http://clic.cern/
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CLIC

Initial energy of 380 GeV to cover Higgs and 
top physics. 

The highest energy stage is 3 TeV in order to 
complement the physics reach of the LHC, for 
example directly producing new  particles 
discovered there (!). Roughly 14 TeV/6.

The higher energy stages also provide a strong 
probe for beyond standard model physics. 
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A bit of history
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Back to the Future

https://clic.cern/european-strategy

https://clic-study.web.cern.ch/content/updated-baseline-
document

https://clic.cern/european-strategy
https://clic-study.web.cern.ch/content/updated-baseline-document
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Linear collider features

Beam energy:
• Beams take single pass through 

machine, so collision energy is length 
times gradient. 

• High-gradient becomes a key 
performance parameter.

• CLIC uses 72 MV/m for 380 GeV stage 
and 100 MV/m for 3 TeV stage.

• Normal conducting rf
• These gradients used to be beyond 

state-of-the-art consequently CLIC 
invested significant resources in 
finding ways to increase gradient.

• Plasma enthusiast aim to go even 
higher.

No upper limit on energy due to synchrotron radiation energy loss – but –rf system must proved full energy in one pass. 
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Linear collider features

Luminosity:
• Beams collide only once.
• Aim for high current and very small 

beam at interaction region.
• CLIC beam current is approximately 1 

A during pulse, 7.3 µA average per 
beam so a total of 5.5 MW average 
beam power – developed extremely 
efficient acceleration with strong 
beam loading. 

• The beam size at the interaction 
region 150 x 3 nm – damping rings to 
produce very low emittance beams 
plus very precise alignment to 
maintain low emittance in linac. 
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A very brief introduction to radio frequency acceleration
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Beam propagation direction. Beam and 
phase velocity must be the same –
synchronism.
How can this be arranged?

Electric field
Magnetic field
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Uniform (rectangular) waveguide

The lines are electric field
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How do we slow down phase velocity to c?

Uniform waveguide

Periodic loading
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Solve the problem that phase velocity is too high (wavelength is too long) 
with periodic loading by putting “irises” in the uniform waveguide
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Floquet’s theorem states, 
translated to rf language, that 
periodic boundary conditions 
give solution with same field in 
every cell, just differing by a 
complex phase advance. 
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Phase synchronism means time for beam to get across cell is the same as accelerating 
phase to get across cell.
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The Brillouin diagram. Frequency vs phase advance per period, which is kL.

synchronism
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Quantities people use
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rf power in, approximately 50 MW, fed into the 
structure symmetrically.

Beam accelerated by 
100 MV/m
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WvP g
=

We now go from stored energy to power via group velocity:

Group velocity
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Quantities people use with group velocity mixed in
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CLIC structure (approximate values):
R’=100 MΩ/m, Q=5500, vg/c=1%
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The layout of a linac radio frequency unit
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Linear accelerator, linac, overview 

Modulator

Klystron

Pulse compressor

Accelerating structures
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Solid-state modulator

Prototype modulator used in high-
gradient test stands.

• Converts mains to 1.5 kV and stores energy in capacitors.
• Switches IGBTs which feed split core transformer 
• Secondary on transformer produces (approximate numbers) 

400 kV, 200 A pulse, which is 80 MW. Pulse duration is 1.5 µs.
• Note pulse is longer than we need for accelerator.
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Klystron

• Pulse from modulator is converted to a current in vacuum 
inside the klystron, approximately 400 keV and 200 A.

• This is done by emitting electrons from a cathode, making a 
vacuum diode.

• 400 keV is sub-relativistic. This allows the beam to be 
bunched through a velocity modulation.

• Power is extracted by cavity which decelerates the bunched 
beam. 
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This klystron modulator unit feeds…

this accelerating structure.
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A CLIC prototype 
accelerating structure. 

outside

inside

11.994 GHz X-band
100 MV/m acceleration
Input power ≈50 MW
Pulse length ≈200 ns
Repetition rate 50 Hz
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Introduction to CLIC linac technology

Very strong involvement of University of Tartu and University of 
Helsinki in understanding high-gradient phenomena!
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High current beam stability

High-current beam requires Higher-
Order-Mode suppression for beam 
stability, just like CLIC

https://doi.org/10.1103/PhysRevAccelBeams.19.011001

https://doi.org/10.1103/PhysRevAccelBeams.19.011001
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32

Now – The thrilling world 
of high gradients!

"Mavericks and surfer" by Brocken Inaglory. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Mavericks_and_surfer.jpg#/media/File:Mavericks_and_surfer.jpg
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We have seen that CLIC (and tomorrow see other applications) requires a high collision energy. This makes a 
high accelerating gradient an extremely important parameter to reduce the length and cost of the facility.

But going to high gradient requires:
• High peak rf power
• Facing high field phenomena, especially vacuum breakdown (sparking)

Vacuum breakdown has been known about for a long time, but with limited quantitative understanding. The 
CLIC project has invested significant resources in extending the quantitative understanding of vacuum arcing 
in order to improve the performance of CLIC structures and so reducing the cost of CLIC and extending its 
energy reach.

Also vacuum arcing is a fascinating and extremely challenging problem of applied physics!

Connection point - You’ve already had an extensive introduction to breakdown in Flyura’s lectures.

Motivation
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• The underlying equations for the acceleration equations we have seen are Maxwell’s 
equations and the Lorentz force – linear equations!

• When we raise the power we put in a structure, increasing the surface fields, we 
encounter a whole range of new phenomena.

• These phenomena include field emission and vacuum arcing and pulsed surface heating 
which, in various combinations, affect the beam and can damage a structure.

• We need to consider:
• Electromagnetism
• Material science
• Plasma physics
• Quantum mechanics - field and photo emission

Complexity
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Vacuum arc, a.k.a. breakdown

Some (round) numbers to keep in mind: 

Average accelerating gradient - 100 MV/m
Peak surface electric field – 220 MV/m
Input power - 50 MW
Pulse length - 180 ns
Pulse energy of 12 J. 

Usually copper walls

Vacuum inside where beam and fields are
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Operational and state-of-the-art

SwissFEL C-band linac:
Just under 30 MV/m

CLIC prototypes:
Over 100 MV/m


