EPFL

Effective model for orbit distortion in spin simulation in FCC-ee

Yi Wu, Félix Carlier, Tatiana Pieloni

Acknowledgements to Alain Blondel, David Sagan, Eliana Gianfelice-Wendt, Tessa Charles, Jörg Wenninger, Werner Herr, and all colleagues

Introduction

- Precise center-of-mass collision energy calibration using resonant depolarization in the FCC-ee
- Energy scans should be done to ensure that sufficient level of the equilibrium polarization can be achieved for the energy calibration.
- Effective models are created to simulate realistic orbits and check their effects on the polarization level

Spin Polarization Simulations

- The Tao program¹ in Bmad is useful for the lattice control, the parameters examination and the polarization simulation.
- Bmad distribution has been successfully compiled and setup on LXPLUS, making HTCondor accessible for simulation.

FCC-ee sequence version 217

Circumference (km)	97.756			
Beam energy (GeV)	45.6			
β_x^* (m)	0.15			
β_y^* (mm)	0.8			
ϵ_x (nm)	0.27			
ϵ_y (pm)	1			
Synchrotron tune <i>Q</i> _s	0.025			
Horizontal tune Q_x	269.139			
Vertical tune Q_y	269.219			

Table 1: Main FCC-ee parameters at Z energy

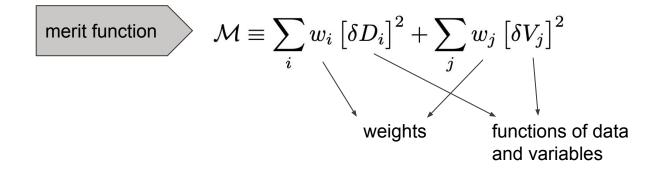
Effective models

- The process of determining corrections for fully misaligned lattices is lengthy and currently not easily achieved.
- Effective models with realistic orbits are built for demonstration purposes.
- Small errors are generated using truncated Gaussian distributions.

	Туре	$\sigma_{\Delta \mathrm{X}}$	$\sigma_{\Delta \mathrm{Y}}$	$\sigma_{\Delta \mathrm{S}}$	$\sigma_{\Delta ext{PSI}}$	$\sigma_{\Delta ext{THETA}}$	$\sigma_{\Delta m PHI}$	
An example		(µm)	(µm)	(µm)	(μrad)	(μrad)	(μrad)	three offsets
	Arc quadrupole	0.1	0.1	0.1	2	2	2	+ three angular misalignments
	Arc sextupole	0.1	0.1	0.1	2	2	2	
	Dipoles	0.1	0.1	0.1	2	0	0	σ : standard deviation of
	IR quadrupole	0.1	0.1	0.1	2	2	2	the Gaussian distribution
	IR sextupole	0.1	0.1	0.1	2	2	2	

Table 2: An example of error settings used in the energy scan

Matching parameters to retrieve the design value


"Data" (parameters to be optimized)

> Q_{x,y,s} □_{x,y} at IPs x, z at IPs

"Variables"

(parameters to be varied)

strengths of RF quadrupoles phase of RF cavities

EPFL

Distribution of the Orbit Distorsions

- Different errors are generated from the same error settings.
- 100 seeds are generated from the error setting in <u>Table 2</u>.

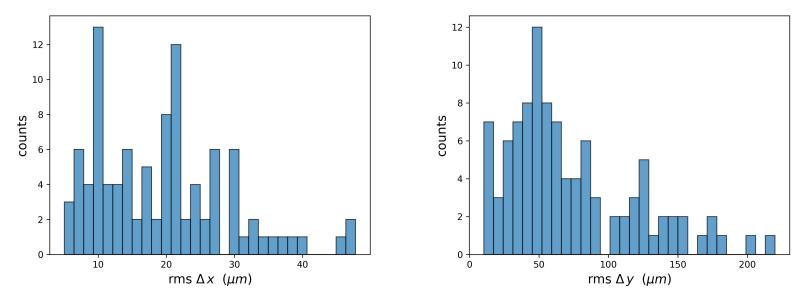


Figure 1: Distribution of rms horizontal orbits of 100 produced errors using the settings in Table 2

Figure 2: Distribution of rms vertical orbits of 100 produced errors using the settings in Table 2

Distribution of Maximum Orbits

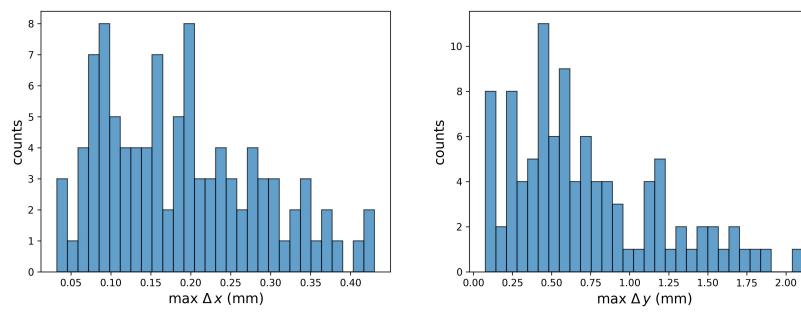


Figure 3: Distribution of maximum horizontal orbits of 100 produced errors using the settings in Table 2

Figure 4: Distribution of maximum vertical orbits of 100 produced errors using the settings in Table 2

EPFL

Distribution of rms Beta-Beating

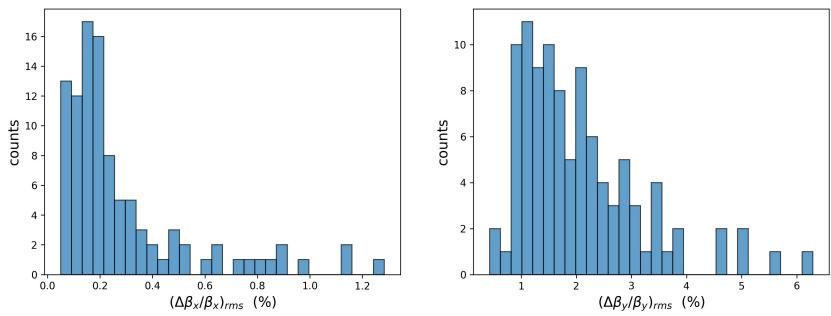


Figure 5: Distribution of horizontal beta-beating of 100 produced errors using the settings in Table 2

Figure 6: Distribution of vertical beta-beating of 100 produced errors using the settings in Table 2

Multiple error sources case 1

		0.15				
	þ	0.8				
	x_{ij}	-0.18				
	z_{ij}	0.02				
	x_{ij}	-0.27				
	z_{ij}	-0.02				
	Synchr	<mark>0.0247</mark>				
	Horizo	269.139				
	Verti	269.219				
		$\Delta x_{\rm rms}$ (μ m)		32.2		
rms	orbit	$\Delta y_{ m rms}$ (μ m)		42.2		
max orbit		Δx_{\max} (mm)	0.26			
		Δy_{\max} (m)		0.44		
pela-pealing /		$(\Delta \beta_x / \beta_x)_{\rm rms}$ (%	$_x/\beta_x$) _{rms} (%)			
		$(\Delta \beta_y / \beta_y)_{\rm rms}$ (%	6)	1.7		
emittance		ϵ_x (nm)		0.271		
		ε _y (pm)		<mark>0.33</mark>		

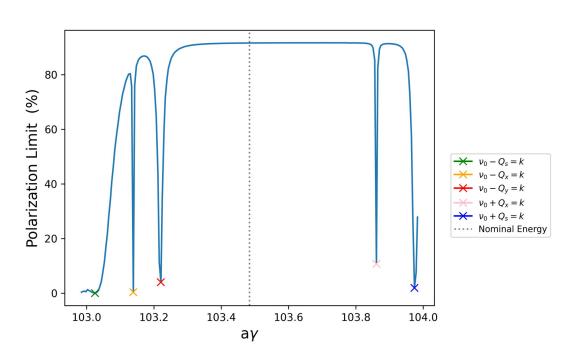


Figure 7: Energy scan with error settings listed in Table 2

Orbit deviation

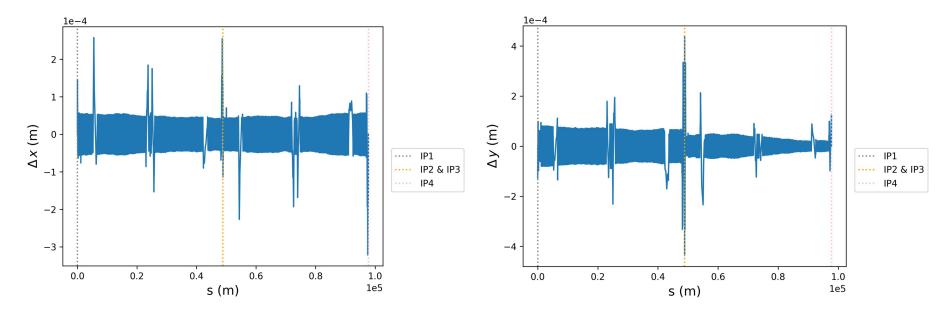


Figure 8: Variation of horizontal orbit deviation in case 1

Figure 9: Variation of vertical orbit deviation in case 1

10

Beta-beating

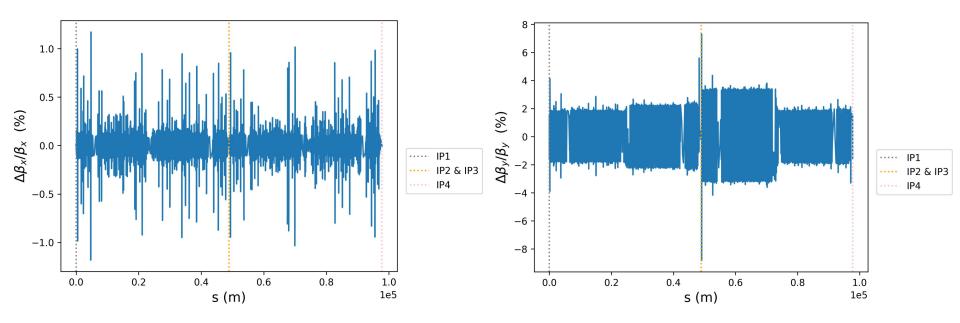


Figure 10: Variation of horizontal beta-beating in case 1

Figure 11: Variation of vertical beta-beating in case 1

Horizontal dispersion

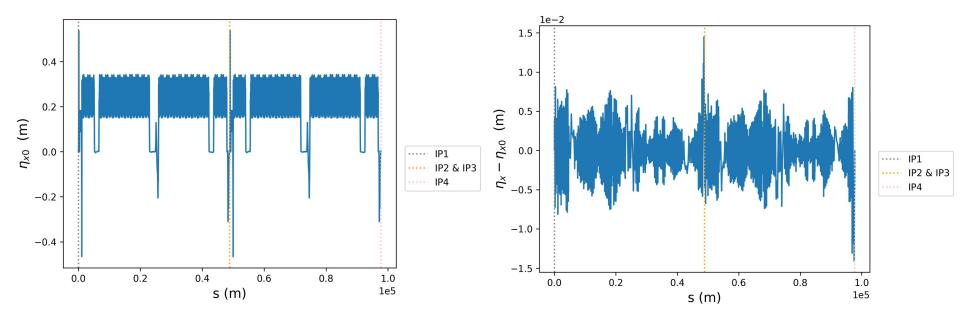


Figure 12: Original horizontal dispersion

Figure 13: Variation of horizontal dispersion in case 1

Vertical dispersion

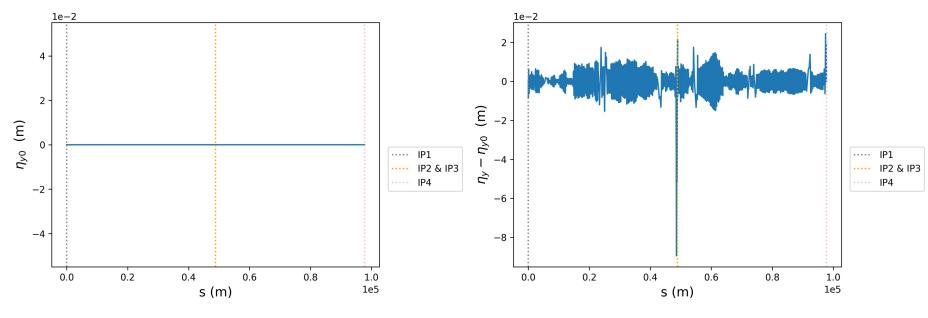


Figure 14: Original vertical dispersion

Figure 15: Variation of vertical dispersion in case 1

Multiple error sources case 2

	β_x^* (m)	0.	15								
	β_{γ}^{*} (mm)	0	.8								
	$x_{ip1,4} (\mu m)$	0.	44								
	$z_{ip1,4} (\mu m)$		06	80 -					h		
	$x_{ip2,3}$ (µm)		65	-					* \		
	$z_{ m ip2,3}~(\mu{ m m})$	0.	06	(%) 60 -							
Sync	chrotron tune Qs	0.0	<mark>247</mark>	mit							
Hoi	rizontal tune Q_x	269	.139	n Li							$\begin{array}{c} \overleftarrow{} & v_0 - Q_s = k \\ \hline & \overleftarrow{} & v_0 - Q_x = k \end{array}$
Ve	ertical tune Q_y	269	.219	atio							$\begin{array}{c} \longrightarrow \\ & \nu_0 - Q_y = k \\ & \longrightarrow \\ & \nu_0 + Q_y = k \end{array}$
	$\Delta x_{ m rms}$ (μ m	1)	24.2	Polarization Limit							$\begin{array}{c} \longrightarrow \\ & \nu_0 + Q_x = k \\ \hline \\ & \swarrow \\ & \nu_0 + Q_s = k \end{array}$
rms orbit	$\rightarrow \Delta y_{\rm rms}$ (μ m	1)	148					····· Nominal Energy			
	$\Delta x_{\rm max}$ (mr	n)	0.35			n					
max orbit	$aggreen \Delta y_{max}$ (mr	n)	1.47	0 -	-*	*			*	*	
beta-beating	$(\Delta \beta_x / \beta_x)_{\rm rms}$	(%)	0.26		103.0	103.2	103.4	103.6	103.8	104.0	
	$\langle \Delta \beta_y / \beta_y \rangle_{\rm rms}$	(%)	2.8				ay	/			
emittance	ϵ_x (nm)		0.269		Figu	re 16: En	ergy scan	with error	· settings li	isted in	Table 2
	$\sim \frac{\epsilon_y \text{ (nm)}}{\epsilon_y \text{ (nm)}}$		<mark>0.165</mark>								

Orbit deviation

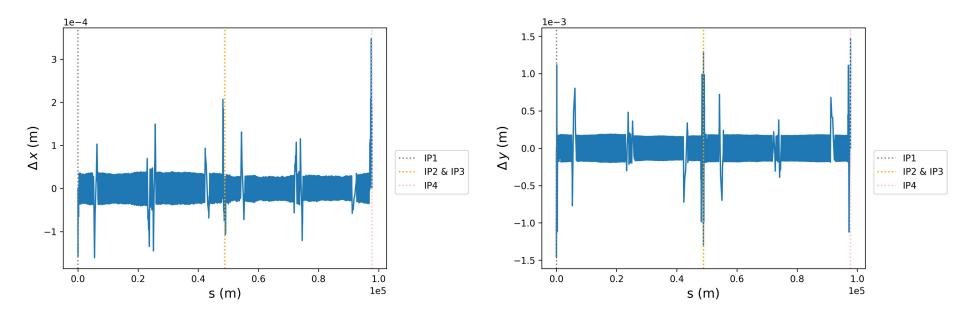


Figure 17: Variation of horizontal orbit deviation in case 2

Figure 18: Variation of vertical orbit deviation in case 2

Beta-beating

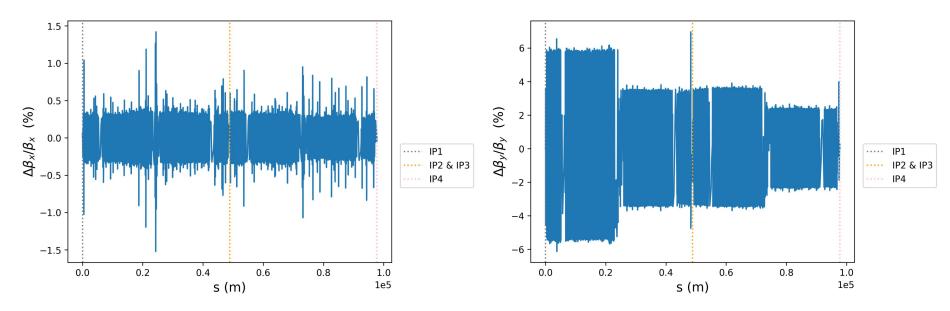


Figure 19: Variation of horizontal beta-beating in case 2

Figure 20: Variation of vertical beta-beating in case 2

Horizontal dispersion

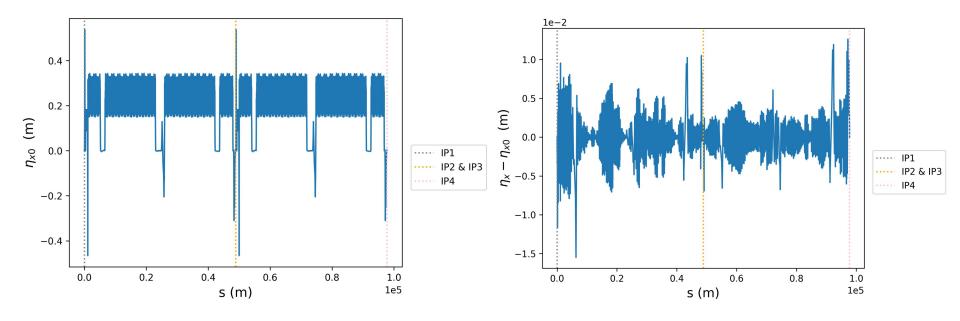


Figure 21: Original horizontal dispersion

Figure 22: Variation of horizontal dispersion in case 2

Vertical dispersion

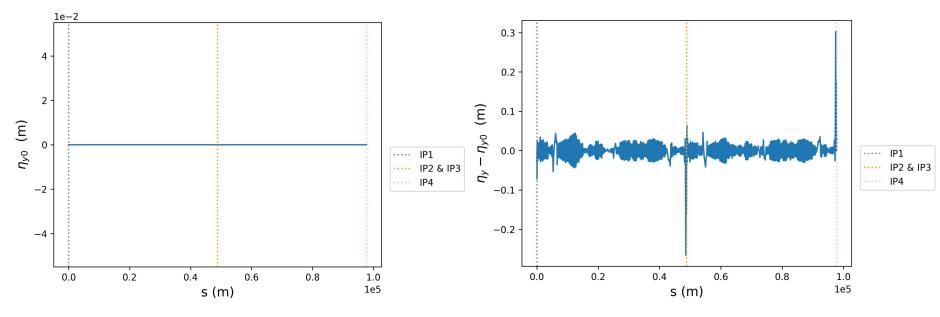


Figure 23: Original vertical dispersion

Figure 24: Variation of vertical dispersion in case 2

Summary

- Effective models are created to simulate the realistic orbit and their effect on spin polarization level
- An efficient way for spin polarization simulation as a proof of concept

EPFL

Topics for discussion

- Hard to match the parameters in the presence of large errors
- Increase the variables for the parameter matching
- Better control of the emittance in the effective models
- A more robust and refined model generation method that offers greater control of the orbit

Thank you!