

Updates Decoherence and Tuning Simulations for FCC-ee

Jacqueline Keintzel and Rogelio Tomas

FCC-ee tuning meeting 10th February 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Decoherence

- Originates from finite tune spread
- Particles do not oscillate synchronously
- After applying a kick particles start to decohere

Individual particles

• Not observable for AC-dipole excitation

Linear chromatictiy Decoherence and recoherence

Second-order chromaticity Decoherence

Amplitude detuning Decoherence Effect different for hadrons and leptons

> Strong synchrotron radiation damps amplitude of each particle

Decoherence illustrated for hadrons Individual amplitudes remain constant over time

CERN

Amp.

FCC TUNING MEETING 10 FEB 2022

JACQUELINE KEINTZEL DECOHERENCE AND FCC TUNING SIMULATIONS

Turns

Average

Decoherence from Chromaticity

Linear chromatictiy Decoherence and recoherence

$$A_{\text{lin.chr.}}(N) = \exp\left\{-\frac{2\sigma_{\delta}^2 Q'^2}{Q_s^2}\sin^2(\pi N Q_s)\right\}$$

R.E. Meller, SSC-N-360, 1987.

Second-order chromaticity Decoherence

$$A_{\text{so.chr.}}(N) = \frac{1}{\sqrt{\left|1 - 2i\xi N + \xi^2 \left(\left(\frac{\sin(2\pi Q_s N)}{2\pi Q_s}\right)^2 - N^2\right)\right|}} \quad \xi = \pi Q'' \sigma_{\xi}^2$$

G. Rumolo and R. Tomas, NIM-A 528, pp. 670-676, 2004.

FCC TUNING MEETING

10 FEB 2022

 σ_{δ} ... energy spread Q' ... linear chromaticity Q'' ... second-order chromaticity Q_{s} ... synchrotron tune N ... turn

Decoherence from Nonlinearity

$$A_{\rm Dec} = \frac{1}{1+\theta^2} \, \exp\left\{-\frac{Z^2}{2} \frac{\theta^2}{1+\theta^2}\right\}$$

R.E. Meller, SSC-N-360, 1987.

Decoherence factor over estimated when synchrotron radiation damping is not included

Simulation Parameters

• Performed for SuperKEKB positron ring (LER)

- Amplitude detuning
 - $dQ_x/d2J_x = 1.76 \times 10^3 \text{ m}^{-1}$
 - $dQ_y/d2J_x = 1.28 \times 10^4 \text{ m}^{-1}$
- Off-momentum amplitude detuning smaller than on-momentum

Note: Horizontal second-order chromaticity and amplitude detuning opposite signs

Parameter	Value
Beam Energy [GeV]	4
Synchr. rad. damp. time $\tau_{\rm SR}$ [ms]	46
Revolution time $[\mu s]$	10
Momentum spread $\sigma_p \ [10^{-4}]$	7.53
Synchrotron tune Q_s [-]	0.0235
β_x^*/β_y^* [mm]	80 / 1
Emittances ϵ_x/ϵ_y [nm/pm]	1.56 / 29.14
Betatron tunes Q_x/Q_y [-]	44.53 / 46.58
Linear chroma. Q'_x/Q'_y [-]	1.5 / 1.5
Second-order chroma. Q''_x/Q''_y [-]	-199 / 196

Simulations for Leptons (w. SR)

- 2000 particles tracked with SAD (scatter plot)
- Compared with theoretical equations

Green line: Decoherence from linear chromaticity and nonlinearitiy

Red line: + second-order chromaticity

Black line:

+ synchrotron radiation damping

Equations over-estimate tracked damping for leptons Why?

Simulations for Hadrons (no SR)

- 2000 particles tracked with SAD (scatter plot)
- Compared with theoretical equations

Green line: Decoherence from linear chromaticity and nonlinearitiy

Red line: + second-order chromaticity

Equations over-estimate tracked data also for hadrons

Results probably from interplay
between tune spread from
second-order chroma and5000

No Second-Order Chromaticity

- 2000 particles tracked with SAD (scatter plot) including synchrotron radiation
- Longitudinal emittance = 0 -> no decoherence from second-order chroma

Decoherence only from nonlinearity gives very good agreement with tracking simulations with 0 longitudinal emittance

Over-estimate results from combination of decoherence from non-linearity and secondorder chromaticity!

Scaling to Damping from SR

- Damping explained fully by decoherence and synchrotron radiation
- Data scaled to compensate for decoherence -> get only synchrotron radiation damping

Amplitude detuning measured by using slices of 500 turns gives

 $dQ_x/d2J_x = 1.81 \times 10^3 m^{-1}$

-> error of +3% with respect to correct amplitude detuning for this lattice (1.76 x 10³ m⁻¹)

Decoherence Summary

- Interplay between decoherence from second-order chromatictiy and non-linearity
- Equations can be used for either
 - Small amplitude detuning \rightarrow G. Rumolo and R. Tomas, NIM-A 528, pp. 670-676, 2004
 - Small second-order chromaticity \rightarrow To be finalized and then submitted
- Are suitable for measurements in SuperKEKB
 - $Q_x' = 1.7 \pm 0.04 \pmod{0.04}$
 - Q_x" = -22 ± 18 (model -199)

Outlook: Understand interplay of both effects

JACQUELINE KEINTZEL DECOHERENCE AND FCC TUNING SIMULATIONS

First Look into Optics Tuning

- Framework created by Tessa Charles
- Created as indidual modules for corrections
 - Beta-beat, coupling and dfs
- Can be run for 1 seed or multiple seeds in htcondor
- Various requirements for python3
 - Different packages required for 1 seed vs htcondor
 - Different versions required for 1 seed vs htcondor
- Existing omc-python3 distribution not compatible
 - /afs/cern.ch/eng/sl/lintrack/omc_python3/bin/python

Requirements	one	seed

attrs==21.4.0 click==8.0.3 contextlib2==21.6.0 execnet==1.9.0 iniconfig==1.1.1 Jinja2==3.0.3 MarkupSafe==2.0.1 mock==4.0.3 numpy==1.22.0 packaging==21.3 pandas==1.3.5 path==16.2.0 path.py==12.5.0 pluggy==1.0.0 py==1.11.0 pyparsing==3.0.6 pytest==6.2.5 pytest-shutil==1.7.0 pytest-warnings==0.3.1 python-dateutil==2.8.2 pytz==2021.3 PyYAML==6.0 random2==1.0.1 scipy==1.7.3 six==1.16.0 termcolor==1.1.0 tfs-pandas==3.0.2 toml==0.10.2

Requirements htcondor

attrs==21.2.0 click==8.0.1 in-place==0.5.0 iniconfig==1.1.1 Jinja2==3.0.1 MarkupSafe==2.0.1 numpy==1.21.1 packaging==21.0 pandas==1.3.1 pluggy==0.13.1 py==1.10.0 pyparsing==2.4.7 pytest==6.2.4 pytest-warnings==0.3.1 python-dateutil==2.8.2 pytz==2021.1 random2==1.0.1 scipy==1.7.0 six==1.16.0 tfs-pandas==2.1.0 toml==0.10.2 PvYAML==6.0

Single Seed - First Experiences

- Started by running the test case for one seed
- Path needed to be changed in correction scripts (correct_betabeat_c.py, etc.)
- {{path}} not recognized \rightarrow for now hard coded changed in variable "response_mat_path"
- Found one hard coded path in dfs_c.py
- project_root = "/afs/cern.ch/work/t/techarle/public/FCCee_tolerance_study/"
- Script went halfway through then stopped with error
- Correctors strengths, orbits, tunes exact zero

To be understood Only for test case?

++++++ Error: seter ++++++ Error: seter	rorf	lag : Errorcode: 1 lag : Description: Th	Reported from pro_twiss: VISS failed		
+++++ warning: Twi	iss f	ailed: MAD-X continu	Jes		
checking (ir	nside	e orbit marco 3 y)			
vycomax		0.0000000000000e+00	;		
vxcomax		0.0000000000000e+00	;		
vbetymax		0.0000000000000e+00	;		
tuneq1		0.0000000000000e+00			
tuneq2		0.00000000000000e+00	;		
testing tune q1 scheme tunes macro					
90	=	9.00000000000000e+01	;		
tuneq1 tuneq2		0.00000000000000e+00 0.00000000000000e+00	;		

12

Single Seed - First Experiences

- Twiss bare: generated before applying errors -> error free twiss
- Twiss beat: generated after applying errors and updated after running corrections
- Hor. rms beta beat: 2.07 %
- Ver. rms beta beat: 5.66 %

To be understood which correction steps have already been performed

JACQUELINE KEINTZEL DECOHERENCE AND FCC TUNING SIMULATIONS

Single Seed - First Experiences

- Twiss bare: generated before applying errors -> error free twiss
- Twiss beat: generated after applying errors and updated after running corrections
- Hor. rms orbit: 7.3 x 10⁻⁵ m
- Ver. rms orbit: 1.2 x 10⁻⁴ m

To be understood which correction steps have already been performed

JACQUELINE KEINTZEL DECOHERENCE AND FCC TUNING SIMULATIONS

Thank you! Updates Decoherence and Tuning Simulations for FCC-ee

Jacqueline Keintzel and Rogelio Tomas

FCC-ee tuning meeting 10th February 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.