

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

FCC HEB imperfections

B. Dalena, A. Chance

(CEA)

Thanks to:

B. Haerer, L. Van Riesen-Haupt, T. Charles, R. Tomas, T. Persson, F. Antoniou, O. Etisken, M. Zampetakis, M. Hofer, F. Carlier, B. Holzer, A. Franchi, A. Latina

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Ceal Outline

- Impact of mis-alignment errors on the HEB ring
- > Impact of linear field errors on the HEB ring
- > Impact of multipole errors on the HEB ring

2

Ceal Linear Errors (fields and mis-alignment)

Tessa Charles FCCIS workshop Nov2021

Туре	Δx (μm)	Δy (μm)	ΔS (μm)	Δ Theta (μ rad)	∆Phi (µrad)	Δ Psi (µrad)	Field Errors
Arc quad*	50	50	100	150	100	300	$\Delta k/k = 2 \times 10^{-4}$
Arc sext*	50	50	100	150	100	300	$\Delta k/k = 2 \times 10^{-4}$
Dip	1000	1000		1000		300	$\Delta k/k = 1 \times 10^{-4}$
Girders	150	150		1000			
BPM**						100	

* relative to the girder

** relative to the quadrupole

As first approximation we took $\Delta x_{tot} = \Delta x_{gird} + \Delta x_{quad}$ randomly distributed values for all the quantities (example: x,y offsets of the quadrupoles = 200 μ m)

On 10 seeds statistics we get always unstable optics!

Main Linear field errors (b1, b2) only

Main quadupoles : $b2 = 2 \times 10^{-4}$ relative random error Main Dipoles: $b1 = 1 \times 10^{-4}$ relative random error $b2 = -1 \times 10^{-4}$ relative systematic error + 10% random component *Courtesy of F. Zimmermann and Jie Gao*

Without orbit, beta-beating and dispersion correction:

4

FUTURF

COLLIDER

100 μm random quadrupole offset only (x,y)

Removing all other mis-alignment except for quadrupole offsets Reducing the randomly distributed offset values to $\pm 3 \sigma$ = 100 μ m

Туре	Δx (μm)	Δy (μm)	ΔS (μm)	Δ Theta (μ rad)	Δ Phi (μ rad)	Δ Psi (μ rad)	Field Errors
Arc quad	100	100					
Arc sext							
Dip							
Girders							
BPM							

Without orbit, beta-beating and dispersion correction:

Cea Multipoles field errors at injection (> b2)

Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be $\leq 5 \times 10^{-4}$

97km 60°/60° optics

Stable initial action @ 4500 turns (~15% tx 20 GeV)

Geometric emittance injected 1.27e-9 nm

Courtesy of F. Zimmermann and Jie Gao

	CT d	ipole	Iron-core dipole		
GFR=R26	28Gs	56Gs	28Gs	56Gs	
B1/B0	-5.20E-04	-1.04E-04	-1.56E-03	-2.60E-04	
B2/B0	4.73E-04	5. 41E-04	-2.03E-03	-2.03E-04	
B3/B0	-7.03E-06	1.05E-04	3. 52E-04	1.76E-04	
B4/B0	-9.14E-04	-3.66E-04	4. 57E-04	-1.83E-04	
B5/B0	3.56E-05	-2.38E-05	-2.38E-05	-3.56E-05	
B6/B0	6.18E-04	2.16E-04	-3.09E-04	9. 27E-05	

relative values @ R = 26 mm

60 seeds

MadX Thin-Lens Tracking

6

- orbit, beta-beating and dispersion correction required for the booster
- coupling correction to still to be seen (target=2×10⁻³ at extraction)
- Impact of linear field errors relative small with respect to mis-alignment
- Impact of multipoles errors at injection on Dynamic Aperture to be follow-up

https://gitlab.cern.ch/fcc-optics/fcc-ee-heb/-/tree/errors