

Developing HLT lines for Run 3 with HltEfficiencyChecker

Ross Hunter

University of Warwick, U.K

Run 3 Starterkit - 17/03/22

with many thanks to Olli Lupton, Rosen Matev, Sascha Stahl and Mika Vesterinen.

Plan

Contents

- Introduction: why you should care about rates and efficiencies & overview of HltEfficiencyChecker,
- Example 1: Rates of Marian's HLT2 lines using the "wizard",
- Example 2: Signal efficiencies of Marian's HLT2 lines with the "wizard",
- Different types of trigger efficiency,
- Example 3: Rates & efficiencies in the advanced "by-hand" workflow.

If time allows:

- Example 4: Running HLT1-then-HLT2 to get HLT2-given-HLT1 efficiencies,
- A few things I didn't go through,
- Summary.
- The examples will involve me coding things up live (sorry in advance for my typing). You can code along with me, or I have provided the completed examples as well. Download the slides to copy!
- Questions welcome anytime. I won't be able to see raised hands so you'll have to shout at me/someone tell me if there is a raised hand.

Intro: Why you should care about rates & efficiencies

LHCb Run 3 Starterkit

The LHCb Dataflow in Run 3

The LHCb Dataflow in Run 3

Ideally, also:
$$\varepsilon_{interesting} = 1$$
, $\varepsilon_{boring} = 0$...

LHCb Run 3 Starterkit

Overview of HltEfficiencyChecker

LHCb Run 3 Starterkit

Wise trigger line development

(with simulated data, before taking real data)

HltEfficiencyChecker was constructed to give these metrics in a consistent, transparent, easy-to-use and automated way.

Setup

• HltEfficiencyChecker lives in MooreAnalysis.

- The vanilla stack doesn't ship MooreAnalysis, so better get it. In stack/:
 - make fast/MooreAnalysis

- I'll be working from the branch rjhunter-starterkit-run-3. You can switch to the same branch with
 - git fetch origin rjhunter-starterkit-run-3
 - git checkout -b rjhunter-starterkit-run-3 FETCH_HEAD

• NOTE: File paths will always be relative to the top level of the stack/

LHCb Run 3 Starterkit

HltEfficiencyChecker in principle

- Configured using a single options file.
- <u>Documentation</u>.
- "Released" in 2020, <u>talk</u>.

Example 1: HLT2 "wizard" rates

- Let's take Marian's example further, and work out the rate and efficiency of the Starterkit $B_s \rightarrow J/\psi \phi$ lines.
- To configure HltEfficiencyChecker, we need an options file in either .yaml or .py

"Developer" mode

- Requires experience writing Moore options files,
- A simple extension to Moore options files,
- Full control/flexibility,
- A.K.A "by-hand".

"Beginner" mode

- Designed to be as selfexplanatory as possible: no experience required,
- Can't quite do everything fancy, but will do most of what you need to tune a line,
- The "wizard" script writes a .py file from your .yaml *under-the-hood*.

Example 1: HLT2 "wizard" rates

• I'll start from

MooreAnalysis/HltEfficiencyChecker/options/hlt2_rate_example.yaml. This uses the same minimum bias MC as in Marian's options file.

Example 1: HLT2 "wizard" rates

• I'll start from

MooreAnalysis/HltEfficiencyChecker/options/hlt2_rate_example.yaml. This uses the same minimum bias MC as in Marian's options file.

 I'm going to (hopefully!) end up with something like MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_rates.yaml

• Execute with MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py MooreAnalysis/HltEfficiencyChecker/ options/starterkit/hlt2_starterkit_rates.yaml

• Feel free to code along with me, or pull up the completed example.

Example 1: Results

• With just 1000 events:

INFO:	Starting /storage/epp2/phrrkw/stack/MooreAnalysis/HltEfficiencyChecker/scripts/hlt_calculate_rates					
INFO: HLT rate	No lines specified. Defaulting to all es:					
Line: Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Incl: 0.0 Incl: 3.0	+/- 0.0 kHz, Excl: 0.0 +/- 1.72 kHz, Excl: 3.0	+/- 0.0 kHz +/- 1.72 kHz		
Hlt2 Tot	tal:	Rate:	3 +/- 1.7 kHz			

• (prepared earlier) if instead 5000 events:

INFO:	Starting /storage/epp2/phrrkw/stack/MooreAnalysis/HltEfficiencyChecker/scripts/hlt_calculate_r					_rates
INFO: HLT rat	No lines specified. Defaulting to all es:					
Line: Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Incl: 1.0 Incl: 1.8	+/- 0.44 kHz, +/- 0.59 kHz,	Excl: 0.2 Excl: 1.0	+/- 0.19 +/- 0.44	kHz kHz
Hlt2 To	tal:	Rate:	2 +/- 0.	6 kHz		
Finishe	d printing HLT rates!					

• Notice both the *inclusive* and *exclusive* rates are given...

LHCb Run 3 Starterkit

Inclusive/exclusive and using_hlt1_filtered_MC

- *Inclusive* rate: rate of that line firing agnostic to other lines,
- *Exclusive* rate: rate of firing on events that only this line fired for,
- *Total* rate: rate that one or more lines fired on an event

These give you some sense of the overlap between lines.

• using_hlt1_filtered_MC - a roughly representative HLT1 has already filtered the file, so the input rate is assumed to be 1 MHz (expected HLT1 output rate in Run 3).

LHCb Run 3 Starterkit

LHCb Run 3 Starterkit

• Need another .yaml, with a few key differences. Firstly, need signal MC and a MC decay descriptor (1).

- Need another .yaml, with a few key differences. Firstly, need signal MC and a MC decay descriptor (1).
- We also must consider denominators. Subjective! Signal efficiency = # triggered events / # we expect to trigger on

- Need another .yaml, with a few key differences. Firstly, need signal MC and a MC decay descriptor (1).
- We also must consider denominators. Subjective! Signal efficiency = # triggered events / # we expect to trigger on
- HltEfficiencyChecker provides a few "standard" denominators. The default is called CanRecoChildren (C.R.C):
 - Events where all final-state particles are charged & made long tracks in $2 < \eta < 5$,
 - You have to tell HltEfficiencyChecker what these are called! (2)

- Need another .yaml, with a few key differences. Firstly, need signal MC and a MC decay descriptor (1).
- We also must consider denominators. Subjective! Signal efficiency = # triggered events / # we expect to trigger on
- HltEfficiencyChecker provides a few "standard" denominators. The default is called CanRecoChildren (C.R.C):
 - Events where all final-state particles are charged & made long tracks in $2 < \eta < 5$,
 - You have to tell HltEfficiencyChecker what these are called! (2)
- (1) and (2) are specified together in an annotated decay descriptor e.g.

"\${Bs}[B_s0 => (J/psi(1S) => \${mup}mu+ \${mum}mu-) (phi(1020) => \${Kp}K+ \${Km}K-)]CC"

and the reconstructible_children key e.g. mup, mum, Kp, Km

Example 2: HLT2 "wizard" efficiencies

• Let's code up our first options file! I'll start from <u>MooreAnalysis/HltEfficiencyChecker/options/hlt2_eff_example.yaml</u>, and use Marian's MC files that he put in <u>Moore/Hlt/Hlt2Conf/options/run_starterkit_bs_to_jpsiphi.py</u>

• I'm going to end up with something like MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml

• Feel free to code along with me, or pull up the completed example.

• Execute with e.g.

MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml

• With 100 events:

NFO:		fficiencies.py
NFO: integrat	No lines specified. Defaulting to all rated HLT efficiencies for the lines with denominator: CanRecoChildren	
ine: ine: ine: ine:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim Efficiency: 0.308 +/- Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim Efficiency: 0.564 +/- Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Efficiency: 0.308 +/- Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision Efficiency: 0.564 +/-	- 0.074 - 0.079 - 0.074 - 0.079
inished	ned printing integrated HLT efficiencies for denominator: CanRecoChildren	
NFO:	Making plots	
info in INFO: INFO: INFO: INFO: Info in Info in Info in Info in	<pre>in <tcanvas::makedefcanvas>: created default TCanvas with name c1</tcanvas::makedefcanvas></pre>	RecoChildrenlogPT.pdf has been created RecoChildrenPT.pdf has been created CanRecoChildrenlogPT.pdf has been created CanRecoChildrenPT.pdf has been created has been created been created
NEO	Einished making plate. Coodhya	

• With 100 events: opening

Efficiencies__Hlt2Starterkit_BsoToJpsiPhi_PR_LineDecision__CanRecoChildren__PT.pdf

• With 1000 events:

INFO:	: Starting /storage/epp2/phrrkw/stack/MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies					
INFO: Integra	No lines specified. Defaulting to all ted HLT efficiencies for the lines with denominator: CanRecoCh	nildren				
Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim	Efficiency:	0.494 +/- 0.028			
Line:	Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim	Efficiency:	0.606 +/- 0.027			
Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision	Efficiency:	0.509 +/- 0.028			
Line:	Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Efficiency:	0.621 +/- 0.027			
Finishe	d printing integrated HLT efficiencies for denominator: CanRec	coChildren				

• With 1000 events:

Before we take a break...

• Later on I'll show some features that are best displayed with a few thousand events, which takes a few minutes or so using the full HLT2 reconstruction.

- I ran these and placed them in the checker-skit-rates/ and checker-skiteffs/ directories in /afs/cern.ch/user/r/rjhunter/public. If you're coding along with me, please copy these directories for use later.
 - On lxplus: cp -r /afs/cern.ch/user/r/rjhunter/public/checkerskit-*.

The Wizardry and --dry-run

• The --dry-run argument is your friend!

```
[phrrkw@veleta stack]$ MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py MooreAnalysis/HltEfficiencyChecker/options/starterkit/h
lt2_starterkit_rates.yaml --dry-run
The commands to run are...
cd 'checker-20220314-174152'
'/storage/epp2/phrrkw/stack/MooreAnalysis/run' 'gaudirun.py' '.hlt_eff_checker_options_D3A813F4.py'
'/storage/epp2/phrrkw/stack/MooreAnalysis/run' 'gaudirun.py' '.hlt_eff_checker_options_D3A813F4.py'
'/storage/epp2/phrrkw/stack/MooreAnalysis/run' 'gaudirun.py' '.hlt_eff_checker_options_D3A813F4.py'
'/storage/epp2/phrrkw/stack/MooreAnalysis/run' '/storage/epp2/phrrkw/stack/MooreAnalysis/HltEfficiencyChecker/scripts/hlt_calculate_rates.py' 'hlt2_starterkit
_rate_ntuple.root' '--using-hlt1-filtered-MC' '--json=Hlt2_rates.json'
```

- 1) It shows you what goes on under-the-hood
- 2) If you just want to re-run the analysis (i.e. make some different plots) then you only need to re-run the final (fast) step, not the tuple-making (slow) step. Save time!

Temporary directories

• Results/plots will be dumped into a temporary directory e.g. checker-20220315-111521/. You can change the name of this with args to hlt_eff_checker.py

[phrrkw@veleta stack]\$ MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py -h usage: hlt_eff_checker.py [-h] [-o OUTPUT] [-s OUTPUT_SUFFIX] [--force] [-n] [--ignore-broken-inputs] config

Script that extracts and plots efficiencies and rates from the high level trigger.

positional arguments: config YAML configuration file optional arguments: -h, --help show this help message and exit -o OUTPUT, --output OUTPUT Output directory prefix. See also --output-suffix. -s OUTPUT_SUFFIX, --output-suffix OUTPUT_SUFFIX Output directory suffix --force Do not fail when output directory exists Only print the commands needed to run from stack/ directory. -n, --dry-run --ignore-broken-inputs Ignore Gaudi::ReturnCode::FailInput errors in check_call. Tupling already skips these files, so this option allows the rest of HltEfficiencyChecker to proceed after skipping broken input file.

• e.g. -o checker-skit- -s rates will give checker-skit-rates/

"TrueSim" efficiencies

ine: Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim Effic	ency: 0.606 +/- 0.027
ine: Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Effic	ency: 0.509 +/- 0.028
ine: Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision 📐 Effic	ency: 0.621 +/- 0.027

• The signal "decision" (DEC)* efficiency does not give the full picture.

* # triggered events /
we expect to trigger on

LHCb Run 3 Starterkit

- The signal "decision" (DEC) efficiency does not give the full picture.
- Consider $B_s \to J/\Psi \phi$ with $(\phi \to K^+K^-)$ and $(J/\Psi \to \mu^+\mu^-)...$

- The signal "decision" (DEC) efficiency does not give the full picture...
- Consider $B_s \to J/\Psi \phi$ with $(\phi \to K^+K^-)$ and $(J/\Psi \to \mu^+\mu^-)...$
- ... in a hadron collider:

- The signal "decision" (DEC) efficiency does not give the full picture...
- Consider $B_s \to J/\Psi \phi$ with $(\phi \to K^+K^-)$ and $(J/\Psi \to \mu^+\mu^-)...$
- ... in a hadron collider:

• Trigger might fire on this,

- The signal "decision" (DEC) efficiency does not give the full picture...
- Consider $B_s \to J/\Psi \phi$ with $(\phi \to K^+K^-)$ and $(J/\Psi \to \mu^+\mu^-)...$
- ... in a hadron collider:

- Trigger might fire on this,
- Or this...

- The signal "decision" (DEC) efficiency does not give the full picture...
- Consider $B_s \to J/\Psi \phi$ with $(\phi \to K^+K^-)$ and $(J/\Psi \to \mu^+\mu^-)...$
- ... in a hadron collider:

- Trigger might fire on this,
- Or this...

x Both of these count towards the DEC efficiency, signal or not.

Need an efficiency that counts only signal triggers.

A better efficiency

TrueSim eff. = # triggered & **matched** events / # we expect to trigger on

Track is matched if #overlapping hits ≥ 70% of trigger candidate hits
 If all tracks match: trigger fired on the signal particle in that event.
 Choice motivated by study presented at <u>vCHEP</u>.

LHCb Run 3 Starterkit

The "by-hand" workflow

LHCb Run 3 Starterkit

The "by-hand" workflow

- Let's take Marian's example further, and work out the rate and efficiency of the Starterkit $B_s \rightarrow J/\psi \phi$ lines.
- To configure HltEfficiencyChecker, we need an options file in either .yaml or .py

"Developer" mode

- Requires experience writing Moore options files,
- A simple extension to Moore options files,
- Full control/flexibility,
- A.K.A "by-hand".

<u>"Beginner" mode</u>

- Designed to be as selfexplanatory as possible: no experience required,
- Can't quite do everything fancy, but will do most of what you need to tune a line,
- Writes a .py file from your .yaml *under-the-hood*,
- A.K.A the "wizard".

Example 3: efficiencies by-hand

- To show that this really is a small extension to a Moore options file, let's hack Marian's options file (Moore/Hlt/Hlt2Conf/options/run_starterkit_bs_to_jpsiphi.py) to give us a tuple that we can calculate rates and efficiencies from.
 - Make sure to set minbias=False for efficiencies.

- I'll end up with something like MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py
 - Feel free to code along or just look at this example!

• Run with

MooreAnalysis/run gaudirun.py MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py

Example 3: efficiencies by-hand

• The output of the tupling job should look something like:

*		
*Br 154 :Hlt2Starterkit_Bs0ToJpsiP	Phi_PR_LineDecision :	*
* Hlt2Starterkit_Bs0ToJps	iPhi_PR_LineDecision/I	*
*Entries : 100 : Total Size=	1162 bytes File Size =	184 *
*Baskets : 1 : Basket Size=	32000 bytes Compression=	2.81 *
*		*****
*Br 155 :Hlt2Starterkit_Bs0ToKmKpM	lumMup_SP_LineDecision :	*
* Hlt2Starterkit_Bs0ToKmK	<pre>KpMumMup_SP_LineDecision/I</pre>	*
*Entries : 100 : Total Size=	1177 bytes File Size =	194 *
*Baskets : 1 : Basket Size=	32000 bytes Compression=	2.68 *
*		*
*Br 156 :Hlt2nSelections : Hlt2nSe	elections/i	*
*Entries : 100 : Total Size=	1022 bytes File Size =	170 *
*Baskets : 1 : Basket Size=	32000 bytes Compression=	2.88 *
*		*****
NTupleSvc	INFO NT	uples saved successfully
ApplicationMgr	INFO Ap	plication Manager Finalized successfully
ApplicationMgr	INFO Ap	plication Manager Terminated successfully

• This tuple has trigger decisions (+MC truth information if decay is specified). A further step is needed to get your rates/efficiencies...

LHCb Run 3 Starterkit

Demystifying the spells

• The wizard script (hlt_eff_checker.py) calls the previous command, and then the analysis script. "By-hand", we must call the analysis python script ourselves:

MooreAnalysis/run python MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py <args> MooreAnalysis/run python MooreAnalysis/HltEfficiencyChecker/scripts/hlt_calculate_rates.py <args>

• <args>? The analysis key-value pairs in the yaml correspond to command-line arguments to the rate or efficiency-calculating scripts:

<pre>ntuple_path: &<u>NTUPLE</u> hlt2_starterkit_eff_ntuple.root</pre>
analysis:
<pre>script: \$HLTEFFICIENCYCHECKERR00T/scripts/hlt_line_efficiencies.py</pre>
args:
input: *NTUPLE
reconstructible_children: mup,mum,Kp,Km
The parent is automatically deduced from the annotated decay descriptor,
<pre># which is passed in a file such as eff_ntuple.root.json, but can also be given:</pre>
parent: B_s0
<pre>legend_header: "B^{0}_{s} #rightarrow J/#Psi#phi"</pre>
true_signal_to_match_to: "Bs"
make_plots: true

 MooreAnalysis/run python MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py hlt2_starterkit_eff_ntuple.root --reconstructible-children mup,mum,Kp,Km --legend-header "B^{0}_{s} #rightarrow J/#psi #phi" --true-signal-to-match-to Bs --make-plots

Example 3: Results

• It's the same as before! Who knew?!?!

It's all the same under-the-hood...

• We just did

MooreAnalysis/run gaudirun.py MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py

• Followed by

MooreAnalysis/run python MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py hlt2_starterkit_eff_ntuple.root --reconstructible-children mup,mum,Kp,Km --legend-header "B^{0}_{s} #rightarrow J/#psi #phi" --true-signal-to-match-to Bs --make-plots

• C.f. what we got with --dry-run on the wizard example:

[phrrkw@veleta stack]\$ MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs .yaml --dry-run The commands to run are...

cd 'checker-20220315-165245'

'/storage/epp2/phrrkw/stack/MooreAnalysis/run' 'gaudirun.py' '.hlt_eff_checker_options_B57EB5D1.py'

'/storage/epp2/phrrkw/stack/MooreAnalysis/run' '/storage/epp2/phrrkw/stack/MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py' 'hlt2_starterkit_eff_ntuple.root' '--reconstructible-children=mup,mum,Kp,Km' '--true-signal-to-match-to=Bs' '--make-plots' '--legend-header=B^{0}_{s} #rightarrow J/#Psi#phi'

Example 4: HLT1-then-HLT2

Many thanks to Matt Kenzie and Matt Monk for their help developing this.

LHCb Run 3 Starterkit

Chained HLT1 + HLT2

• On real data, HLT2 will be evaluated on output of HLT1. So, to tune a HLT2 line, you might want the HLT2-given-passed-HLT1 efficiency, right?

• HltEfficiencyChecker can do this too with a few extra lines, by running HLT1 and HLT2 in sequence.

• Let's take our HLT2 wizard efficiencies script (MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml), and an example from the stack (MooreAnalysis/HltEfficiencyChecker/options/hlt1_and_hlt2_eff_example.yaml) and make the necessary additions.

• I'll end up with something like HltEfficiencyChecker/options/starterkit/hlt1_and_hlt2_starterkit_effs.yaml

Example 4: Results

• With 100 events:

Line: Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim	Efficiency: Efficiency:	0.308 +/- 0.074 0.564 +/- 0.079
Line: Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Efficiency: Efficiency:	0.308 +/- 0.074
Finished	printing integrated HLT efficiencies for denominator: CanRec	oChildren	
			kmvas
Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim	Efficiency:	0.292 +/- 0.093
Line:	Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim	Efficiency:	0.500 +/- 0.102
Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision	Efficiency:	0.292 +/- 0.093
Line:	Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Efficiency:	0.500 +/- 0.102
Finished	printing integrated HLT efficiencies for denominator: CanRec	oChildrenAndHlt1tr	rackmvas
INFO:	Making plots		

Example 4: Results

• With 1000 events:

Line: Line: Line: Line: Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Efficiency: Efficiency: Efficiency: Efficiency: Efficiency:	0.494 +/- 0.028 0.606 +/- 0.027 0.509 +/- 0.028 0.621 +/- 0.027
Finished	printing integrated HLT efficiencies for denominator: CanRec	oChildren	
Integrat	ed HLT efficiencies for the lines with denominator: CanRecoCh	ildrenAndHlt1trac	kmvas
Line: Line: Line: Line: Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Efficiency: Efficiency: Efficiency: Efficiency: Efficiency:	0.525 +/- 0.035 0.625 +/- 0.034 0.540 +/- 0.035 0.645 +/- 0.034
Finished	printing integrated HLT efficiencies for denominator: CanRec	oChildrenAndHlt1t:	rackmvas
INF0:	Making plots		

• Notice that the efficiencies are higher given a HLT1 MVA line passed.

LHCb Run 3 Starterkit

Rate & efficiency of a group of lines

• If you think your signal might trigger several lines and want the inclusive rate/efficiencies, we use the handy --rates-groups and --effs-groups (thanks @lpica) arguments to the analysis scripts.

• We don't need to remake any tuples. Let's use those results directories you copied earlier! Firstly checker-skit-rates/ and translate the yaml key-value pairs to arguments to hlt_calculate_rates.py

• Let's calculate the inclusive rate of our two trigger lines using, adding the argument:

--rates-groups
StarterkitLines:Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision,Hlt2Star
terkit_Bs0ToJpsiPhi_PR_LineDecision

Rate & efficiency of a group of lines

• With 5000 events:

HLT rat	es:				
Line: Line:	Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision	Incl: 1.0 Incl: 1.8	+/- 0.44 kHz, Excl: 0 +/- 0.59 kHz, Excl: 1	.2 +/- 0.19 .0 +/- 0.44	kHz kHz
Rates g INFO:	rouped by common physics: StarterkitLines group is formed of Hlt2Starterk	it_Bs0ToJps	siPhi_PR_LineDecision,	 Hlt2Starterk	it_Bs0ToKmKpMumMup_SP_LineDecision.
Group:	StarterkitLines lines	Incl: 2.0	+/- 0.63 kHz, Excl: 2	.0 +/- 0.63	kHz
Hlt2 To	tal:	Rate:	2 +/- 0.6 kHz		

Efficiency of a group of lines

• Again, we can use the HLT1-and-HLT2 tuple we created earlier made with hlt1_and_hlt2_starterkit_effs.yaml, saved in checker-skit-effs/

Efficiency of a group of lines

- Again, we can use the HLT1-and-HLT2 tuple we created earlier made with hlt1_and_hlt2_starterkit_effs.yaml, saved in checker-skit-effs/
- Passing in addition --effs-groups Hlt1TrackMVAs:Hlt1TwoTrackMVADecision,Hlt1TrackMVADecision to hlt_line_efficiencies.py:

Group: Group:	HitifrackMVA lines HitiTrackMVATrueSim lines	Efficiency: Efficiency:	0.576 +/- 0.027	
Group	HIttrackWVA lines	Efficiency	0 606 ±/_ 0 027	
INFO:	Hlt1TrackMVATrueSim group contains ['Bs_Hlt1TwoTrackM	/ADecisionTrueSim',	'Bs_Hlt1TrackMVADecisionTrueSim'].
INFO:	Hlt1TrackMVA group contains ['Hlt1Tw	oTrackMVADecision	', 'Hlt1TrackMVADeci	ision'].
Efficie	ncies grouped by common physics:			
Line:	Hlt1TwoTrackMVADecision	Efficiency:	0.597 +/- 0.027	
Line:	Hlt1TrackMVADecision	Efficiency:	0.352 +/- 0.026	
Line:	Bs_Hlt1TwoTrackMVADecisionTrueSim	Efficiency:	0.555 +/- 0.027	
Line:	Bs_Hlt1TrackMVADecisionTrueSim	Efficiency:	0.324 +/- 0.026	

Rate & efficiency of a group of lines

- Now we have all the ingredients for a total HLT efficiency!
- Our HLT2-given-HLT1 efficiency earlier was

Integrated HLT efficiencies for the lines with denominator: CanRecoChildrenAndHlt1trackmvas						
Line:	Bs_Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecisionTrueSim	Efficiency:	0.525 +/- 0.035			
Line:	Bs_Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecisionTrueSim	Efficiency:	0.625 +/- 0.034			

• The HLT1TrackMVA efficiency was

INFO:	Hlt1TrackMVATrueSim group contains ['Bs_Hlt1TwoTrackMVADecisionTrueSi		, VADecisionTrueSim',	, 'Bs_Hlt1TrackMVADecisionTrueSim'].
Group:	Hlt1TrackMVA lines	Efficiency:	0.606 +/- 0.027	
Group:	Hlt1TrackMVATrueSim lines	Efficiency:	0.576 +/- 0.027	

• Total HLT trigger efficiency = $0.525 (0.625) \times 0.576 = 0.302 (0.36)$

LHCb Run 3 Starterkit

1. Have a look through the arguments to hlt_calculate_rates.py and hlt_line_efficiencies.py e.g.

[phrrkw@veleta stack]\$ MooreAnalysis/run python MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py -h

usage: hlt_line_efficiencies.py [-h] [--metadata METADATA] [--denoms DENOMS] [--lines LINES] [--vars VARS] [--decay-name DECAY_NAME] [--parent PARENT] --reconstructible-children RECONSTRUCTIBLE_CHILDREN [--true-signal-to-match-to TRUE_SIGNAL_TO_MATCH_TO] [--effs-groups EFFS_GROUPS [EFFS_GROUPS ...]] [--plot-group-effs] [--custom-denoms CUSTOM_DENOMS] [--make-plots] [--legend-header LEGEND_HEADER] [--xtitle XTITLE] [--plot-format PLOT_FORMAT] [--plot-prefix PLOT_PREFIX] [--shape-distr-with-denom SHAPE_DISTR_WITH_DENOM] [--nbins NBINS] [--shape-nbins SHAPE_NBINS] [--no-legend] [--json JSON] input

Analysis script to calculate and plot efficiencies from the tuple provided. Use --help for options or visit the Moore online documentation.

positional arguments: input Input ROOT file with tuples. optional arguments: -h, --help show this help message and exit JSON input metadata (defaults to <input>.metadata.json) --metadata METADATA -- denoms DENOMS Comma-separated list of efficiency denominators. --lines LINES Comma-separated list of lines to plot results of. Comma-separated list of vars to plot against. Defaults to the parent. Specify a particle by prefixing with the branch name and a colon e.g. "B_s0:PT" --vars VARS --decav-name DECAY NAME Decay short name used in titles. --parent PARENT --reconstructible-children RECONSTRUCTIBLE_CHILDREN Comma-separated list of child names. --true-signal-to-match-to TRUE_SIGNAL_TO_MATCH_TO Comma-separated list of particle names (specified in the annotated decay descriptor) that you'd like to see TrueSim efficiences for. --effs-groups EFFS_GROUPS [EFFS_GROUPS ...] Whitespace-separated list of groups of lines for which you'd like to see the inclusive efficiency of, each prefixed with a name and a colon e.g. dimuon_lines:Hlt1DiMuonHighMassLineDecision,Hlt1DiMuonLowMassLineDecision. --plot-group-effs Plot the group efficiencies as well. --custom-denoms CUSTOM_DENOMS Comma-separated list of custom cut strings to be applied in addition to the other denominators. E.g. you could pass "Hlt1TrackMVADecision || Hlt1TwoTrackMVADecision" to assess an Hlt2 efficiency with respect to Hlt1. You can also pass each custom denominator a nickname by passing a name with a colon e.g "Hlt1TrackMVAB:Hlt1TrackMVADecision || Hlt1TwoTrackMVADecision" --make-plots --legend-header LEGEND_HEADER Give your plot a nice header. TLatex is supported e.g. J/#psi #rightarrow #mu#mu --xtitle XTITLE Optional plot x-axis title. TLatex supported e.g. "p_{T} (B^{0}_{s})" --plot-format PLOT_FORMAT --plot-prefix PLOT_PREFIX Prefix for the plot file paths. --shape-distr-with-denom SHAPE_DISTR_WITH_DENOM For plots where more than 1 denom is shown, specify the denom cut to apply on the shape histogram shown in the background of the plot. For plots with 1 denom only, that denom is used --- nbins NBINS Number of efficiency bins. --shape-nbins SHAPE_NBINS Number of bins the underlying variable distribution will be plotted in. --no-legend --json JSON If set to a filename, write results as json

LHCb Run 3 Starterkit

2. Tweaking the line: Moore has the nice property that we can instantiate multiple copies of the same line with slightly different thresholds

```
def make_lines():
    standard_lines = [line_builder() for line_builder in all_lines.values()]
    # This is to demonstrate how `configurable`/`bind` works. We could also pass the function a
    with lb@tolcpmum_line.bind(
        name="Hlt2Tutorial_Lb@ToLcpMumNu_LcpToPpKmPip_Pip_pt450MeV_Line",
        pi_pt_min=450 * MeV):
    modified_line = lb@tolcpmum_line()
    return standard_lines + [modified_line]
run_moore(options, make_lines, public_tools)
```

More on this in the <u>Modifying Thresholds</u> section of the Moore documentation.

LHCb Run 3 Starterkit

3. Rather than relying on some vaguely representative HLT1 employed in HLT1 filtered MC, you can run HLT1-then-HLT2 and calculate a rate given that any HLT1 line passed. See <u>this section</u> of the documentation.

Be careful with this though, as Allen currently has a passthrough line in the default sequence. So you might want to combine this with --lines.

Disclaimer

• TrueSim matching will fail on neutral objects since they have no track. You'll just get DEC efficiencies there.

Summary

- Intro to trigger dataflow: availability of data storage requires analysts to balance HLT efficiency with HLT rate.
- HltEfficiencyChecker is a centralised, automated, easy-to-use and consistent tool, written to facilitate this optimisation for line authors (analysts).
- It has a "beginner" mode (the *wizard*), and an "advanced" by-hand mode. There are a variety of examples of both in MooreAnalysis/HltEfficiencyChecker/options/
- It gives you rates on minimum bias, DEC and TrueSim efficiencies on signal MC. DEC efficiencies will not always give you an accurate picture of the line's performance.
- You can work HLT2-given-HLT1 efficiencies, and inclusive rates and efficiencies of groups of lines.
- <u>Documentation</u>. Helpdesk: <u>Upgrade HLT2 mattermost</u>. I'll attach a light version of these slides to the agenda.

LHCb Run 3 Starterkit

Thank you for your attention. Any questions?

LHCb Run 3 Starterkit

Backup: Writing Decay Descriptors

• Particles: <u>https://gitlab.cern.ch/lhcb-conddb/DDDB/-/blob/master/param/ParticleTable.txt</u>

• Arrows:

https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders #Arrows

Backup: Allen sequences

- Allen is configured in *sequences* these define the control flow of reconstruction all the way through to selections.
- The default is called hlt1_pp_default, and you don't have to specify it in options (it's the default after all!).
- However, recently the default sequence started using RETINA clusters AFAIK this is the VELO clustering being done on FPGAs, but these clusters need to be saved in your MC file for the default Allen reconstruction to use them.
- This all happened quite recently, and our files don't have them. We bypass using RETINA clusters with the hlt1_pp_veloSP sequence.
- More on this in the <u>Allen documentation</u>.

LHCb Run 3 Starterkit