
Developing HLT lines for Run 3 with
HltEfficiencyChecker

Ross Hunter
University of Warwick, U.K

Run 3 Starterkit - 17/03/22

with many thanks to Olli Lupton, Rosen Matev, Sascha Stahl and Mika Vesterinen.

Plan
Contents
• Introduction: why you should care about rates and efficiencies & overview of HltEfficiencyChecker,
• Example 1: Rates of Marian’s HLT2 lines using the “wizard”,
• Example 2: Signal efficiencies of Marian’s HLT2 lines with the “wizard”,
• Different types of trigger efficiency,
• Example 3: Rates & efficiencies in the advanced “by-hand” workflow.

If time allows:
• Example 4: Running HLT1-then-HLT2 to get HLT2-given-HLT1 efficiencies,
• A few things I didn’t go through,

• Summary.

• The examples will involve me coding things up live (sorry in advance for my typing). You can code
along with me, or I have provided the completed examples as well. Download the slides to copy!

• Questions welcome anytime. I won’t be able to see raised hands so you’ll have to shout at
me/someone tell me if there is a raised hand.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 1

sometime
around here

Intro: Why you should care about rates & efficiencies

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 2

The LHCb Dataflow in Run 3

Ross Hunter, University of Warwick 3

FULL
DETECTOR
READOUT

REAL-TIME
ALIGNMENT &
CALIBRATION

LHC BUNCH
CROSSING (40 MHz)

BUFFER

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS

68%
TURBO

26%
FULL

6%
CALIB5 TB/s

30 MHz non-empty pp

70-200
GB/s

5
TB/s

0.5-1.5
MHz

10
GB/s

EVENTS

EVENTS(GPU HLT1)

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(CPU HLT2)

FULL DETECTOR
RECONSTRUCTION

& SELECTIONS
5.9

GB/s

1.6
GB/s

2.5
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR
EVENTS

EN
DUpgrade Trigger and Online TDR

Upgrade Computing Model TDR

LHCb Run 3 Starterkit

https://cds.cern.ch/record/1701361/files/LHCB-TDR-016.pdf
https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf

Ross Hunter, University of Warwick

FULL
DETECTOR
READOUT

REAL-TIME
ALIGNMENT &
CALIBRATION

LHC BUNCH
CROSSING (40 MHz)

BUFFER

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS

68%
TURBO

26%
FULL

6%
CALIB5 TB/s

30 MHz non-empty pp

70-200
GB/s

5
TB/s

0.5-1.5
MHz

10
GB/s

EVENTS

EVENTS(GPU HLT1)

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(CPU HLT2)

FULL DETECTOR
RECONSTRUCTION

& SELECTIONS
5.9

GB/s

1.6
GB/s

2.5
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR
EVENTS

Upgrade Trigger and Online TDR
Upgrade Computing Model TDR

FULL
DETECTOR
READOUT

REAL-TIME
ALIGNMENT &
CALIBRATION

LHC BUNCH
CROSSING (40 MHz)

BUFFER

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS

68%
TURBO

26%
FULL

6%
CALIB5 TB/s

30 MHz non-empty pp

70-200
GB/s

5
TB/s

0.5-1.5
MHz

10
GB/s

EVENTS

EVENTS(GPU HLT1)

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(CPU HLT2)

FULL DETECTOR
RECONSTRUCTION

& SELECTIONS
5.9

GB/s

1.6
GB/s

2.5
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR
EVENTS

FULL
DETECTOR
READOUT

REAL-TIME
ALIGNMENT &
CALIBRATION

LHC BUNCH
CROSSING (40 MHz)

BUFFER

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS

68%
TURBO

26%
FULL

6%
CALIB5 TB/s

30 MHz non-empty pp

70-200
GB/s

5
TB/s

0.5-1.5
MHz

10
GB/s

EVENTS

EVENTS(GPU HLT1)

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(CPU HLT2)

FULL DETECTOR
RECONSTRUCTION

& SELECTIONS
5.9

GB/s

1.6
GB/s

2.5
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR
EVENTS

Ideally, also: 𝜀!"#$%$&#!"' = 1, 𝜀()%!"' = 0…

3

The LHCb Dataflow in Run 3

Trigger lines

Limitations

LHCb Run 3 Starterkit

https://cds.cern.ch/record/1701361/files/LHCB-TDR-016.pdf
https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf

Overview of HltEfficiencyChecker

Ross Hunter, University of Warwick 4LHCb Run 3 Starterkit

Ross Hunter, University of Warwick

Wise trigger line development
(with simulated data, before taking real data)

Signal efficiency
triggered events /

we expect to trigger on

Trigger Rate
input rate × # triggered events

/ # minimum bias events

(N.B Bandwidth (MB/s) =
Trigger Rate (kHz) x Event Size

(kB))

HltEfficiencyChecker was constructed to give these metrics in a consistent,
transparent, easy-to-use and automated way.

5LHCb Run 3 Starterkit

HltEfficiencyChecker was constructed to give these metrics in a consistent,
transparent, easy-to-use and automated way.

Ross Hunter, University of Warwick

Everyone uses
the same

definitions

Thoroughly-documented,
accessible & centralized code

“Beginner” and “developer”
modes, tutorials etc.

Results in 1 command

Wise trigger line development
(with simulated data, before taking real data)

Signal efficiency
triggered events /

we expect to trigger on

Trigger Rate
input rate × # triggered events

/ # minimum bias events

(N.B Bandwidth (MB/s) =
Trigger Rate (kHz) x Event Size

(kB))

5LHCb Run 3 Starterkit

Setup
• HltEfficiencyChecker lives in MooreAnalysis.

• The vanilla stack doesn’t ship MooreAnalysis, so better get it. In stack/:
• make fast/MooreAnalysis

• I’ll be working from the branch rjhunter-starterkit-run-3. You can switch
to the same branch with
• git fetch origin rjhunter-starterkit-run-3
• git checkout -b rjhunter-starterkit-run-3 FETCH_HEAD

• NOTE: File paths will always be relative to the top level of the stack/

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 6

Get some
MC

Run it
through
Allen/
Moore

Save
decisions

and
kinematics
to a tuple

Work out
some rates

or
efficiencies

Plot
/tabulate

them!

• Workflow:

• Configured using a single options file.
• Documentation.
• “Released” in 2020, talk.

HltEfficiencyChecker in principle

Ross Hunter, University of Warwick 7LHCb Run 3 Starterkit

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/tutorials/hltefficiencychecker.html
https://indico.cern.ch/event/872911/

Example 1: HLT2 “wizard” rates
• Let’s take Marian’s example further, and work out the rate and efficiency

of the Starterkit 𝐵! → 𝐽/𝜓𝜙 lines.

• To configure HltEfficiencyChecker, we need an options file in either .yaml
or .py

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 8

“Developer” mode
• Requires experience writing

Moore options files,
• A simple extension to Moore

options files,
• Full control/flexibility,
• A.K.A “by-hand”.

“Beginner” mode
• Designed to be as self-

explanatory as possible: no
experience required,

• Can’t quite do everything
fancy, but will do most of
what you need to tune a line,

• The “wizard” script writes a
.py file from your .yaml
under-the-hood.

Example 1: HLT2 “wizard” rates
• I’ll start from

MooreAnalysis/HltEfficiencyChecker/options/hlt2_rate_example.yaml. This uses
the same minimum bias MC as in Marian’s options file.

• I’m going to (hopefully!) end up with something like
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_rates.yaml

• Execute with MooreAnalysis/run
MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py
MooreAnalysis/HltEfficiencyChecker/ options/starterkit/hlt2_starterkit_rates.yaml

• Feel free to code along with me, or pull up the completed example.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 9

The wizard script

Example 1: HLT2 “wizard” rates
• I’ll start from

MooreAnalysis/HltEfficiencyChecker/options/hlt2_rate_example.yaml. This uses
the same minimum bias MC as in Marian’s options file.

• I’m going to (hopefully!) end up with something like
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_rates.yaml

• Execute with MooreAnalysis/run
MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py
MooreAnalysis/HltEfficiencyChecker/ options/starterkit/hlt2_starterkit_rates.yaml

• Feel free to code along with me, or pull up the completed example.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 9

the wizard script

Example 1: Results
• With just 1000 events:

• (prepared earlier) if instead 5000 events:

• Notice both the inclusive and exclusive rates are given...
LHCb Run 3 Starterkit Ross Hunter, University of Warwick 10

Inclusive/exclusive and using_hlt1_filtered_MC
• Inclusive rate: rate of that line firing agnostic to other lines,
• Exclusive rate: rate of firing on events that only this line fired for,
• Total rate: rate that one or more lines fired on an event
These give you some sense of the overlap between lines.

• using_hlt1_filtered_MC - a roughly representative HLT1 has already filtered the file, so
the input rate is assumed to be 1 MHz (expected HLT1 output rate in Run 3).

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 11

FULL
DETECTOR
READOUT

REAL-TIME
ALIGNMENT &
CALIBRATION

LHC BUNCH
CROSSING (40 MHz)

BUFFER

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS

68%
TURBO

26%
FULL

6%
CALIB5 TB/s

30 MHz non-empty pp

70-200
GB/s

5
TB/s

0.5-1.5
MHz

10
GB/s

EVENTS

EVENTS(GPU HLT1)

PARTIAL DETECTOR
RECONSTRUCTION

& SELECTIONS
(CPU HLT2)

FULL DETECTOR
RECONSTRUCTION

& SELECTIONS
5.9

GB/s

1.6
GB/s

2.5
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR
EVENTS

“Wizard” Trigger efficiencies

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 12

“Wizard” Trigger efficiencies
• Need another .yaml, with a few key differences. Firstly, need signal MC

and a MC decay descriptor (1).

• We also must consider denominators.
Signal efficiency = # triggered events / # we expect to trigger on

• HltEfficiencyChecker provides a few “standard” denominators. The default
is called CanRecoChildren (C.R.C):
• All reconstructible, final-state particles made long tracks in 2 < 𝜂 < 5,
• You have to tell HltEfficiencyChecker what these are called! (2)

• (1) and (2) are specified together in an annotated decay descriptor e.g.
"${Bs}[B_s0 => (J/psi(1S) => ${mup}mu+ ${mum}mu-) (phi(1020) =>
${Kp}K+ ${Km}K-)]CC”

and the reconstructible_children key.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 13

“Wizard” Trigger efficiencies
• Need another .yaml, with a few key differences. Firstly, need signal MC

and a MC decay descriptor (1).

• We also must consider denominators.
Signal efficiency = # triggered events / # we expect to trigger on

• HltEfficiencyChecker provides a few “standard” denominators. The default
is called CanRecoChildren (C.R.C):
• All reconstructible, final-state particles made long tracks in 2 < 𝜂 < 5,
• You have to tell HltEfficiencyChecker what these are called! (2)

• (1) and (2) are specified together in an annotated decay descriptor e.g.
"${Bs}[B_s0 => (J/psi(1S) => ${mup}mu+ ${mum}mu-) (phi(1020) =>
${Kp}K+ ${Km}K-)]CC”

and the reconstructible_children key.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 13

Subjective!

“Wizard” Trigger efficiencies
• Need another .yaml, with a few key differences. Firstly, need signal MC

and a MC decay descriptor (1).

• We also must consider denominators.
Signal efficiency = # triggered events / # we expect to trigger on

• HltEfficiencyChecker provides a few “standard” denominators. The default
is called CanRecoChildren (C.R.C):
• Events where all final-state particles are charged & made long tracks in 2 < 𝜂 < 5,
• You have to tell HltEfficiencyChecker what these are called! (2)

• (1) and (2) are specified together in an annotated decay descriptor e.g.
"${Bs}[B_s0 => (J/psi(1S) => ${mup}mu+ ${mum}mu-) (phi(1020) =>
${Kp}K+ ${Km}K-)]CC”

and the reconstructible_children key.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 13

Subjective!

“Wizard” Trigger efficiencies
• Need another .yaml, with a few key differences. Firstly, need signal MC

and a MC decay descriptor (1).

• We also must consider denominators.
Signal efficiency = # triggered events / # we expect to trigger on

• HltEfficiencyChecker provides a few “standard” denominators. The default
is called CanRecoChildren (C.R.C):
• Events where all final-state particles are charged & made long tracks in 2 < 𝜂 < 5,
• You have to tell HltEfficiencyChecker what these are called! (2)

• (1) and (2) are specified together in an annotated decay descriptor e.g.
"${Bs}[B_s0 => (J/psi(1S) => ${mup}mu+ ${mum}mu-) (phi(1020) =>
${Kp}K+ ${Km}K-)]CC”

and the reconstructible_children key e.g. mup,mum,Kp,Km

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 13

Subjective!

Example 2: HLT2 “wizard” efficiencies
• Let’s code up our first options file! I’ll start from

MooreAnalysis/HltEfficiencyChecker/options/hlt2_eff_example.yaml, and use
Marian’s MC files that he put in
Moore/Hlt/Hlt2Conf/options/run_starterkit_bs_to_jpsiphi.py

• I’m going to end up with something like
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml

• Feel free to code along with me, or pull up the completed example.

• Execute with e.g.
MooreAnalysis/run MooreAnalysis/HltEfficiencyChecker/scripts/hlt_eff_checker.py
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 14

Live Example 2: Results
• With 100 events:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 15

Live Example 2: Results
• With 100 events: opening

Efficiencies__Hlt2Starterkit_Bs0ToJpsiPhi_PR_LineDecision__CanRecoChildren__PT.pdf

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 16

2000 4000 6000 8000 10000 12000
(Bs) / MeV

T
p

0

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y

φΨ J/→ s
0B

Starterkit_Bs0ToJpsiPhi_PR_,
 0.07± = 0.31 ε

Bs_Starterkit_Bs0ToJpsiPhi_PR_,
 0.07± (TrueSim) = 0.31 ε

Distribution (C.R.C),
37 events

Live Example 2: Results
• With 1000 events:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 17

Live Example 2: Results
• With 1000 events:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 18

5000 10000 15000
(Bs) / MeV

T
p

0

0.2

0.4

0.6

0.8

1
Ef

fic
ie

nc
y

φΨ J/→ s
0B

Starterkit_Bs0ToJpsiPhi_PR_,
 0.03± = 0.51 ε

Bs_Starterkit_Bs0ToJpsiPhi_PR_,
 0.03± (TrueSim) = 0.49 ε

Distribution (C.R.C),
323 events

Before we take a break…
• Later on I’ll show some features that are best displayed with a few

thousand events, which takes a few minutes or so using the full HLT2
reconstruction.

• I ran these and placed them in the checker-skit-rates/ and checker-skit-
effs/ directories in /afs/cern.ch/user/r/rjhunter/public. If you’re coding
along with me, please copy these directories for use later.
• On lxplus: cp -r /afs/cern.ch/user/r/rjhunter/public/checker-
skit-* .

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 19

The Wizardry and --dry-run
• The --dry-run argument is your friend!

1) It shows you what goes on under-the-hood
2) If you just want to re-run the analysis (i.e. make some different plots)

then you only need to re-run the final (fast) step, not the tuple-making
(slow) step. Save time!

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 21

Temporary directories
• Results/plots will be dumped into a temporary directory e.g. checker-

20220315-111521/. You can change the name of this with args to
hlt_eff_checker.py

• e.g. -o checker-skit- -s rates will give checker-skit-rates/

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 22

“TrueSim” efficiencies

Ross Hunter, University of Warwick 23LHCb Run 3 Starterkit

The problem with efficiencies
• The signal “decision” (DEC)* efficiency does not give the full picture.

Ross Hunter, University of Warwick 24

* # triggered events /
we expect to trigger on

LHCb Run 3 Starterkit

The problem with efficiencies
• The signal “decision” (DEC) efficiency does not give the full picture.
• Consider 𝐵! → 𝐽/Ψ 𝜙 with (𝜙 → 𝐾"𝐾#) and ⁄𝐽 Ψ → 𝜇"𝜇# …

Ross Hunter, University of Warwick

𝐾

𝐾

p p

𝜇

𝜇

True simulated
candidate

24LHCb Run 3 Starterkit

p p

The problem with efficiencies
• The signal “decision” (DEC) efficiency does not give the full picture…
• Consider 𝐵! → 𝐽/Ψ 𝜙 with (𝜙 → 𝐾"𝐾#) and ⁄𝐽 Ψ → 𝜇"𝜇# …
• … in a hadron collider:

Ross Hunter, University of Warwick 24LHCb Run 3 Starterkit

p p

The problem with efficiencies
• The signal “decision” (DEC) efficiency does not give the full picture…
• Consider 𝐵! → 𝐽/Ψ 𝜙 with (𝜙 → 𝐾"𝐾#) and ⁄𝐽 Ψ → 𝜇"𝜇# …
• … in a hadron collider:

• Trigger might fire on this,

Ross Hunter, University of Warwick

Trigger reconstructed
candidate

24LHCb Run 3 Starterkit

• The signal “decision” (DEC) efficiency does not give the full picture…
• Consider 𝐵! → 𝐽/Ψ 𝜙 with (𝜙 → 𝐾"𝐾#) and ⁄𝐽 Ψ → 𝜇"𝜇# …
• … in a hadron collider:

• Trigger might fire on this,
• Or this…

p p

The problem with efficiencies

Ross Hunter, University of Warwick

Trigger reconstructed
candidate

24LHCb Run 3 Starterkit

• The signal “decision” (DEC) efficiency does not give the full picture…
• Consider 𝐵! → 𝐽/Ψ 𝜙 with (𝜙 → 𝐾"𝐾#) and ⁄𝐽 Ψ → 𝜇"𝜇# …
• … in a hadron collider:

• Trigger might fire on this,
• Or this…
✗ Both of these count towards the DEC efficiency, signal or not.
ü Need an efficiency that counts only signal triggers.

p p

The problem with efficiencies

Ross Hunter, University of Warwick

Trigger reconstructed
candidate

24LHCb Run 3 Starterkit

A better efficiency
TrueSim eff. = # triggered & matched events / # we expect to trigger on

Track is matched if #overlapping hits ≥ 70% of trigger candidate hits
If all tracks match: trigger fired on the signal particle in that event.

Choice motivated by study presented at vCHEP.

Ross Hunter, University of Warwick

𝐾

𝐾

p p

𝜇

𝜇

simulated_hits =
{kaon1: [hit1, hit2, ...],
...
muon2: [hit12, hit13, ...]}

reconstructed_hits =
{track1: [hit1’, hit2’, ...],
...
track4: [hit12’, hit13’, ...]}

True simulated
candidate

Trigger reconstructed
candidate

p p

25LHCb Run 3 Starterkit

https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_04024/epjconf_chep2021_04024.html

The “by-hand” workflow

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 26

The “by-hand” workflow
• Let’s take Marian’s example further, and work out the rate and efficiency

of the Starterkit 𝐵! → 𝐽/𝜓𝜙 lines.

• To configure HltEfficiencyChecker, we need an options file in either .yaml
or .py

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 27

“Developer” mode
• Requires experience writing

Moore options files,
• A simple extension to Moore

options files,
• Full control/flexibility,
• A.K.A “by-hand”.

“Beginner” mode
• Designed to be as self-

explanatory as possible: no
experience required,

• Can’t quite do everything
fancy, but will do most of
what you need to tune a line,

• Writes a .py file from your
.yaml under-the-hood,

• A.K.A the “wizard”.

Example 3: efficiencies by-hand
• To show that this really is a small extension to a Moore options file, let’s hack Marian’s

options file (Moore/Hlt/Hlt2Conf/options/run_starterkit_bs_to_jpsiphi.py) to give us a
tuple that we can calculate rates and efficiencies from.
• Make sure to set minbias=False for efficiencies.

• I’ll end up with something like
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py
• Feel free to code along or just look at this example!

• Run with
MooreAnalysis/run gaudirun.py
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 28

Example 3: efficiencies by-hand
• The output of the tupling job should look something like:

• This tuple has trigger decisions (+MC truth information if decay is specified). A
further step is needed to get your rates/efficiencies…

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 29

Demystifying the spells
• The wizard script (hlt_eff_checker.py) calls the previous command, and then the analysis

script. “By-hand”, we must call the analysis python script ourselves:

• <args>? The analysis key-value pairs in the yaml correspond to command-line arguments to
the rate or efficiency-calculating scripts:

• MooreAnalysis/run python
MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py
hlt2_starterkit_eff_ntuple.root --reconstructible-children mup,mum,Kp,Km
--legend-header “B^{0}_{s} #rightarrow J/#psi #phi” --true-signal-to-match-to
Bs --make-plots

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 32

Example 3: Results
• It’s the same as before! Who knew?!?!

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 33

2000 4000 6000 8000 10000 12000
(Bs) / MeV

T
p

0

0.2

0.4

0.6

0.8

1
Ef

fic
ie

nc
y

 phiψ J/→ sB
Starterkit_Bs0ToJpsiPhi_PR_,

 0.07± = 0.31 ε
Bs_Starterkit_Bs0ToJpsiPhi_PR_,

 0.07± (TrueSim) = 0.31 ε
Distribution (C.R.C),
37 events

It’s all the same under-the-hood…
• We just did
MooreAnalysis/run gaudirun.py
MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_example.py

• Followed by
MooreAnalysis/run python
MooreAnalysis/HltEfficiencyChecker/scripts/hlt_line_efficiencies.py
hlt2_starterkit_eff_ntuple.root --reconstructible-children mup,mum,Kp,Km
--legend-header “B^{0}_{s} #rightarrow J/#psi #phi” --true-signal-to-match-to Bs
--make-plots

• C.f. what we got with --dry-run on the wizard example:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 34

Example 4: HLT1-then-HLT2

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 35

Many thanks to Matt Kenzie and Matt Monk
for their help developing this.

Chained HLT1 + HLT2
• On real data, HLT2 will be evaluated on output of HLT1. So, to tune a HLT2 line, you

might want the HLT2-given-passed-HLT1 efficiency, right?

• HltEfficiencyChecker can do this too with a few extra lines, by running HLT1 and
HLT2 in sequence.

• Let’s take our HLT2 wizard efficiencies script
(MooreAnalysis/HltEfficiencyChecker/options/starterkit/hlt2_starterkit_effs.yaml),
and an example from the stack
(MooreAnalysis/HltEfficiencyChecker/options/hlt1_and_hlt2_eff_example.yaml)
and make the necessary additions.

• I’ll end up with something like
HltEfficiencyChecker/options/starterkit/hlt1_and_hlt2_starterkit_effs.yaml

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 36

Example 4: Results

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 37

• With 100 events:

Example 4: Results

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 38

• With 1000 events:

• Notice that the efficiencies are higher given a HLT1 MVA line passed.

Rate & efficiency of a group of lines
• If you think your signal might trigger several lines and want the inclusive

rate/efficiencies, we use the handy --rates-groups and --effs-
groups (thanks @lpica) arguments to the analysis scripts.

• We don’t need to remake any tuples. Let’s use those results directories you
copied earlier! Firstly checker-skit-rates/ and translate the yaml key-value
pairs to arguments to hlt_calculate_rates.py

• Let’s calculate the inclusive rate of our two trigger lines using, adding the
argument:
--rates-groups
StarterkitLines:Hlt2Starterkit_Bs0ToKmKpMumMup_SP_LineDecision,Hlt2Star
terkit_Bs0ToJpsiPhi_PR_LineDecision

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 39

Rate & efficiency of a group of lines
• With 5000 events:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 40

Efficiency of a group of lines
• Again, we can use the HLT1-and-HLT2 tuple we created earlier made with

hlt1_and_hlt2_starterkit_effs.yaml, saved in checker-skit-effs/

• Passing --effs-groups
Hlt1TrackMVAs:Hlt1TwoTrackMVADecision,Hlt1TrackMVADecis
ion to hlt_line_efficiencies.py:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 41

Efficiency of a group of lines
• Again, we can use the HLT1-and-HLT2 tuple we created earlier made with

hlt1_and_hlt2_starterkit_effs.yaml, saved in checker-skit-effs/

• Passing in addition --effs-groups
Hlt1TrackMVAs:Hlt1TwoTrackMVADecision,Hlt1TrackMVADecision to
hlt_line_efficiencies.py:

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 41

Rate & efficiency of a group of lines
• Now we have all the ingredients for a total HLT efficiency!

• Our HLT2-given-HLT1 efficiency earlier was

• The HLT1TrackMVA efficiency was

• Total HLT trigger efficiency = 0.525 (0.625) x 0.576 = 0.302 (0.36)

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 42

Extra features to explore

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 43

Extra features to explore
1. Have a look through the arguments to hlt_calculate_rates.py and

hlt_line_efficiencies.py e.g.

• Check out the documentation

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 44

Extra features to explore
2. Tweaking the line: Moore has the nice property that we can instantiate

multiple copies of the same line with slightly different thresholds

More on this in the Modifying Thresholds section of the Moore
documentation.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 45

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/tutorials/hlt2_line.html

Extra features to explore
3. Rather than relying on some vaguely representative HLT1 employed in

HLT1 filtered MC, you can run HLT1-then-HLT2 and calculate a rate
given that any HLT1 line passed. See this section of the documentation.

Be careful with this though, as Allen currently has a passthrough line in the
default sequence. So you might want to combine this with --lines.

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 46

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/tutorials/hltefficiencychecker.html

Disclaimer

• TrueSim matching will fail on neutral objects since they have no track.
You’ll just get DEC efficiencies there.

Ross Hunter, University of Warwick 47LHCb Run 3 Starterkit

Summary
• Intro to trigger dataflow: availability of data storage requires analysts to balance HLT

efficiency with HLT rate.

• HltEfficiencyChecker is a centralised, automated, easy-to-use and consistent tool, written
to facilitate this optimisation for line authors (analysts).

• It has a “beginner” mode (the wizard), and an “advanced” by-hand mode. There are a
variety of examples of both in MooreAnalysis/HltEfficiencyChecker/options/

• It gives you rates on minimum bias, DEC and TrueSim efficiencies on signal MC. DEC
efficiencies will not always give you an accurate picture of the line’s performance.

• You can work HLT2-given-HLT1 efficiencies, and inclusive rates and efficiencies of
groups of lines.

• Documentation. Helpdesk: Upgrade HLT2 mattermost. I’ll attach a light version of these
slides to the agenda.

Ross Hunter, University of WarwickLHCb Run 3 Starterkit 48

https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/tutorials/hltefficiencychecker.html
https://mattermost.web.cern.ch/lhcb/channels/upgrade-hlt2

Thank you for your attention.
Any questions?

Ross Hunter, University of Warwick 49LHCb Run 3 Starterkit

Backup: Writing Decay Descriptors
• Particles: https://gitlab.cern.ch/lhcb-conddb/DDDB/-

/blob/master/param/ParticleTable.txt

• Arrows:
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders
#Arrows

LHCb Run 3 Starterkit Ross Hunter, University of Warwick 50

https://gitlab.cern.ch/lhcb-conddb/DDDB/-/blob/master/param/ParticleTable.txt
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders

Backup: Allen sequences
• Allen is configured in sequences - these define the control flow of

reconstruction all the way through to selections.

• The default is called hlt1_pp_default, and you don’t have to specify it in
options (it’s the default after all!).

• However, recently the default sequence started using RETINA clusters -
AFAIK this is the VELO clustering being done on FPGAs, but these
clusters need to be saved in your MC file for the default Allen
reconstruction to use them.

• This all happened quite recently, and our files don’t have them. We bypass
using RETINA clusters with the hlt1_pp_veloSP sequence.

• More on this in the Allen documentation.
LHCb Run 3 Starterkit Ross Hunter, University of Warwick 51

https://allen-doc.docs.cern.ch/setup/input_files.html?

