
Run 3 Starterkit:
Analysis Productions

Dylan Jaide White (they/them)

With thanks to Aidan Wiederhold, Chris Burr, Giulia Tuci, Ryun O’Neil

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 1 / 34

Introduction

Today we’ll be covering how to create ntuples using the Analysis
Productions (AP) system

With a focus on some of the new features added for run 3

This lesson is essentially a combination of:
Starterkit lesson on Analysis Productions
Hands-on session on using checks from the 8/11/21 EMTF meeting

Except now using run 3 FEST data!

We will:
Learn what Analysis Productions are & how they work
Create a simple production
Add some checks
Test the production with GitLab CI

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 2 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions
https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions
https://lhcb.github.io/starterkit-lessons/first-analysis-steps/analysis-productions.html
https://indico.cern.ch/event/1092992/

Introduction
Disclaimers

A few notes before we begin:
Parts of AP (primarily the checks) are still in development, and some
specifics could change. Please see the docs for the most up-to-date info
Getting this to work for FEST data has required some extra steps
compared to what will be needed for real in run 3, and some things
aren’t working like normal. I’ll point these out as we go

Now let’s start!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 3 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions#checks

Overview of Analysis Productions

Analysis Productions is a more streamlined/automated way to make
ntuples

Automatically creates, submits, & manages grid jobs

Compared to the old way of everyone creating their own ntuples &
grid jobs, this has several advantages:

Automation - we don’t have to monitor our own grid jobs! (or
manually resubmit failed ones)
Validation - CI tests and liasons will help spot any mistakes before
running
Preservation - all AP ntuples are automatically added to bookkeeping,
stored centrally, and can always be reproduced
Sharing - all LHCb users can access ntuples from all productions, so
different analyses using the same dataset can share

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 4 / 34

Overview of Analysis Productions
Example (1/3)

Let’s start by seeing what we’ll be making today: link to AP web app

This is not actually a full production, but just the CI tests
This uses a small subset of data for fast testing before full submission
Later, the actual production would then run over the full dataset

AP web app is an easy way to view info about both CI tests and full
productions

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 5 / 34

https://lhcb-analysis-productions-preview.web.cern.ch/pipelines/?id=3722457&prod=FEST

Overview of Analysis Productions
Example (2/3)

Here we see two jobs were created:
One for sprucing, one for ntupling (DaVinci)

Usually, you won’t need to include sprucing in your production
You would probably use pre-made DSTs as inputs for DaVinci

This is just needed for this FEST data to work today!

For a normal production, this is usually for multiple DaVinci jobs
For different years, polarities, etc.

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 6 / 34

Overview of Analysis Productions
Example (3/3)

Click on the ”example_tupling...” job to see more about it

Here you can see lots of info about this job:
Input & output info (+ download for output file)
Results of checks (more about these later...)
In-browser TTree viewer - very handy!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 7 / 34

Hands on (part 1)
Cloning AP repo

Let’s jump right into making this
First we need to clone the AnalysisProductions repo

git clone ssh://git@gitlab.cern.ch:7999/lhcb-
datapkg/AnalysisProductions.git
git clone https://gitlab.cern.ch/lhcb-
datapkg/AnalysisProductions.git
etc.

cd AnalysisProductions

Now checkout the branch we’ll be starting from:
git checkout -b ${USER}/starterkit-run3-fest --no-track
origin/djwhite/starterkit-run3-fest
Changing the name and not tracking is so everyone can push their
branch independently later on

We’ll be working with the production called FEST

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 8 / 34

Hands on (part 1)
Understanding the files

Let’s see what files are in this production:

Split up into 3 groups:
Top (red): main files needed for an AP. Main focus of this lesson!

DaVinci options, and a YAML configuration file for AP
Middle (cyan): a second options file for DaVinci, with extra config
needed to make FEST data work
Bottom (purple): everything for the sprucing job

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 9 / 34

Hands on (part 1)
FunTuple options

First let’s look at funtuple_options.py (view on GitLab)
Hopefully this looks very familiar to you - if you followed the
FunTuple lesson on Wednesday from Abhijit, Davide, & Martina, you
essentially already wrote this yourself!
Different decay (K0

s −→π+π−), but very similar otherwise

Other than the decay, the only real differences are some small syntax
changes

e.g. branches instead of fields in the FunTuple_Particles
constructor

Reason: AP can only used released versions of LHCb software
The most recent release of DaVinci is v60r1, which was released before
this syntax was changed
Yet another reason to start writing any functors you want sooner rather
than later!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 10 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions/-/blob/0482de125512078e46118ab2df7b407e76c2c424/FEST/funtuple_options.py
https://indico.cern.ch/event/1124730/sessions/431024/#20220316

Hands on (part 1)
YAML configuration file

Now let’s look at info.yaml (view on GitLab)
This is the file that defines what jobs the production will create, and
what files they each need
We can see the sprucing job is in here already
There is also the defaults job name

Keyword - anything under defaults will be applied to all other jobs

Note the automatically_configure option
You would normally use this to automatically set things like
DDDB/CondDB tags, data types, etc.
But this isn’t working for FEST data right now
So for now, this is turned off, and those values are already set manually
in the second options file I mentioned earlier

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 11 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions/-/blob/0482de125512078e46118ab2df7b407e76c2c424/FEST/info.yaml

Hands on (part 1)
lb-ap commands

For working with productions locally in this repo, we can use lb-ap
commands

Remember to get a proxy if you haven’t already: lhcb-proxy-init
Try: lb-ap list FEST

This will list all the jobs in this production
Currently, this is only the pre-existing sprucing job

So let’s add a DaVinci job!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 12 / 34

Hands on (part 1)
Adding a DaVinci job (1/2)

This takes a very similar form to the sprucing job that’s already there
We need to specify the following:

application - the relevant DaVinci release (here v60r1)
output - name for a .root ntuple
input - usually, you would specify a .dst from bookkeeping with
bk_query, but for the FEST data we will instead use the output from
the sprucing job directly
options - the two DaVinci options files we saw earlier

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 13 / 34

Hands on (part 1)
Adding a DaVinci job (2/2)

Once we’re done we should have something like this:

1 example_tupling_full_line1:
2 application: DaVinci/v60r1
3 output: dvntuple.root
4 input:
5 job_name: spruce_exclusive_feb_2022
6 filetype: TEST_STREAM_A.DST
7 options:
8 - funtuple_options.py
9 - job_config.py

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 14 / 34

Hands on (part 1)
Local testing with lb-ap test

This is usually when I would say: ”Now we can use lb-ap test to
run this job locally, to make sure it works before pushing your branch”
Unfortunately, there’s been an issue running local tests with the
FEST data that we haven’t been able to fix yet
The best we can do for now is validating the options:

lb-ap validate FEST

If that comes back all OK, let’s move straight to pushing the branch:
git add FEST/info.yaml
git commit -m "<commit message here>"
git push origin ${USER}/starterkit-run3-fest

Now seems like a good opportunity to take a short break!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 15 / 34

Hands on (part 1)
Looking at our pipelines on the web app

After pushing your branch, go to the pipelines section of the web app
Your branch should be there - click on it to see how it’s going!
Hopefully everything is green, and ran correctly!

It should look very similar to what we saw earlier when we looked at
the final results
Except, it will be missing any checks - we didn’t add any!
So let’s look at how to do that now

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 16 / 34

https://lhcb-analysis-productions-preview.web.cern.ch/pipelines/

Checks
Overview

The checks system is a new addition to AP
CI tests are very good at spotting code that breaks/crashes
But not so good at identifying subtle issues with data quality, or
missing information that you might want for your analysis

Idea: to be able to easily define requirements that the data in the
finished ntuple should satisfy
These are defined in the info.yaml as well

Currently, six types of checks, including:
Minimum number of entries (per unit luminosity)
Require certain branches to exist
Create assorted histograms & verify certain properties

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 17 / 34

Checks
Getting started

Checks are added to a production’s info.yaml in 2 stages:

First: define your check
These go under a checks keyword job name (similar to default)
You give your check a name, then define its type & parameters
Each check type has different parameters - see the docs for what each
one needs

Second: add your check to the relevant jobs
List check names under a checks option in each job
For today, we only want to add checks to the job running DaVinci

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 18 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions#checks

Checks
Example

Example from a different production (using real run 2 data): a simple
check that’s been added to an info.yaml file:

As you can see, it’s only 6 extra lines to add this check!
Now let’s write one ourselves which will work for the FEST data

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 19 / 34

Hands on (part 2)
Adding your first check (1/2)

Let’s start with the simplest one: num_entries
I find it’s helpful to have the docs open for this

First: let’s add a new section (base level) called checks
Within that, we give our new check a name - anything you want

Something descriptive is ideal - I’ll use require_100_entries
Indented another level, we can now start to define our new check

Every check must have a type provided - for this one, num_entries
You can then check the docs to see what else is needed for that type
Here, we only need count, which we’ll set to 100

It should look something like this:

1 checks:
2 at_least_100_entries:
3 type: num_entries
4 count: 100

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 20 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions#checks

Hands on (part 2)
Adding your first check (2/2)

All that remains is to tell it which jobs to use this check on
If you define a check but never use it, the YAML file parsing won’t be
successful - all checks defined must be used by at least one job

We only want to add checks to the tupling job
Under example_tupling... (or whatever you called it), add a
checks option
Within that, create a list (using -) and add your check’s name

1 example_tupling_full_line1:
2 application: DaVinci/v60r1
3 ...
4 checks:
5 - at_least_100_entries

You can check your YAML again with lb-ap validate FEST

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 21 / 34

Aside: lb-ap check

Just like earlier with lb-test, we can’t currently test this locally
If we could: now is when I would show you lb-ap check
This only runs the checks, but requires a .root file from a previous
test command
This means you don’t have to wait for DaVinci every time if you’ve
only changed your checks!

Once run 3 arrives, this will work!
But for today, we’ll have to skip this & move straight on to adding
more checks

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 22 / 34

Hands on (part 2)
Creating a branches_exist check

Another simple check type is branches_exist
Only one required parameter: branches

Check fails if any of these branches are not present in the final ntuple
1 checks:
2 ...
3 Ks0_branches:
4 type: branches_exist
5 branches:
6 - KS0_M
7 - KS0_PX
8 - KS0_PY
9 - KS0_PZ

Then add the check name to the checks list in the ntupling job
Advanced: can try using Jinja templating to create the list of
branches using loops instead of writing out each entry (see docs)

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 23 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions#yaml-configuration

Hands on (part 2)
Creating a range check (1/2)

When we looked on the web app earlier, we saw some histograms
under the checks section
Let’s create a 1D histogram using a range check

Looking again at the docs, we can see that only two things are
required for a range check:

expression: what the histogram will be of
Let’s use KS0_M

limits: upper/lower bounds for the x-axis
min: 460
max: 540

The other options (marked with *) are optional
But let’s try out exp_mean and mean_tolerance

exp_mean: 497
mean_tolerance: 5.0
This check will fail if the histogram’s mean is not in the range 497± 5

Failed checks cause the full CI test to fail, so mistakes can be caught!
D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 24 / 34

Hands on (part 2)
Creating a range check (2/2)

Want to end up with something like this:

1 checks:
2 ...
3 Ks0_mass_hist:
4 type: range
5 expression: KS0_M
6 limits:
7 min: 460
8 max: 540
9 exp_mean: 497

10 mean_tolerance: 5

Again, remember to add the name of this new check to the checks
list in the ntupling job!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 25 / 34

Hands on (part 2)
Creating a second range check (1/2)

Let’s try out some of the other features of range checks using a
different histogram

The expression parameter can be a combination of variables
e.g. (KS0_PX**2 + KS0_PY**2 + KS0_PZ**2)**0.5

If using this: reasonable upper/lower bounds are 0/120,000
Custom number of bins: set n_bins to an integer on [2,100]
Blinding:

In responses to last year’s surveys in WGs, this was one of the most
requested features
Can add multiple ranges to blind
List of max/min limits - pick a range to blind
Advanced: try adding multiple blinding ranges

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 26 / 34

Hands on (part 2)
Creating a second range check (2/2)

Here are the values I’ll use:

1 checks:
2 ...
3 Ks0_mom_hist:
4 type: range
5 expression: (KS0_PX**2 + KS0_PY**2 + KS0_PZ**2)**0.5
6 limits:
7 min: 0
8 max: 120000
9 n_bins: 40

10 blind_ranges:
11 -
12 min: 40000
13 max: 50000

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 27 / 34

Hands on (part 2)
Creating a 2D hist: range_nd check (1/2)

The range_nd check can be used to make 2D (or 3D) hists
Syntax similar to range, but with space for multiple axes

1 checks:
2 ...
3 Ks0_mom_xy_hist:
4 type: range_nd
5 expressions:
6 x: KS0_PX
7 y: KS0_PY
8 limits:
9 x:

10 min: -3000
11 max: 3000
…

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 28 / 34

Hands on (part 2)
Creating a 2D hist: range_nd check (2/2)

…
12 y:
13 min: -3000
14 max: 3000
15 n_bins:
16 x: 20
17 y: 20

Advanced: try adding one or more blinding ranges

Once you think you’ve finished, try validating your production again
lb-ap validate FEST

If that works, commit your changes & push your branch again
While we wait for that to run...

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 29 / 34

Aside: Other check types

Two more check types we haven’t used here today:
num_entries_per_invpb: requires at least a certain number of events
per pb−1 of lumi

Only works with real data
range_bkg_subtracted: like the 1D range check, but can perform
simple background subtraction (without any fits)

All the details on how to use these are in the docs

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 30 / 34

https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions#checks

Aside: Offline HLT2 monitoring

We are currently working on plans to use AP for an automated offline
HLT2 monitoring system
With the checks feature, we are able to perform checks on HLT2
output, including creating histograms
Aim: to set up a system that lets us automatically run regular APs on
early run 3 data, and display the plots somewhere convenient

Ideally this will be as easy-to-use as possible, so that everyone is able
to quickly set up monitoring for their own lines/channels

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 31 / 34

Hands on (part 2)
Viewing check results in CI

Now let’s look at the checks in the web app!
If your pipelines still haven’t finished, use this one for now: link

Hopefully all the checks have passed!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 32 / 34

https://lhcb-analysis-productions-preview.web.cern.ch/pipelines/
https://lhcb-analysis-productions-preview.web.cern.ch/pipelines/?id=3722457&prod=FEST

What happens when checks fail?

Here’s a different pipeline where the checks didn’t pass: link

The messages should help to identify what’s wrong
In this case: K0

s mass branch was missing from ntuple
D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 33 / 34

https://lhcb-analysis-productions-preview.web.cern.ch/pipelines/?id=3722537&prod=FEST
https://gitlab.cern.ch/lhcb-datapkg/AnalysisProductions/-/commit/bd6b8d698b303f1bee0deaaab6bc02d2e070c28a

Final remarks
Today we have covered how to:

Create a simple analysis production
Add checks to a production
View the results of checks using the AP web app

But there’s still a lot of work ongoing
And a few bugs still to squash

We hope you will use checks in your productions for run 3!
They should hopefully double as both an easy way to check your data
looks as you expect, and a way to automatically monitor your lines

Your feedback is very useful to us!
The system need to be tested to spot possible bugs and improve the
user experience
Are there any other types of checks that you would find useful?

Thanks for coming! I hope you’ve enjoyed the Starterkit this week!
And thanks to all the organisers!

D. J. White (they/them) Analysis Productions @ Run 3 Starterkit 18th March 2022 34 / 34

	Introduction
	Overview of Analysis Productions
	Hands on (part 1)
	Checks
	Hands on (part 2)
	Final remarks

