Luminosity plans for Run3

Vladik Balagura, Elena Dall'Occo, Elena Graverini

LHCb Starterkit-For-All Full Run 3 Edition
14/03/2022

How to measure lumi?

mean bunch luminosity $\quad\left\langle\mathscr{L}_{b}\right\rangle=\frac{\left\langle\mu_{\text {inel }}\right\rangle f_{r}}{\sigma_{\text {inel }}}=\frac{\left\langle\mu_{v i s}\right\rangle f_{r}}{\sigma_{v i s}}$ with $\quad \begin{aligned} & \mu_{v i s}=\varepsilon \mu \\ & \sigma_{v i s}=\varepsilon \sigma\end{aligned}$
$f_{r}=$ LHC revolution frequency (11245 Hz)
$\sigma_{\text {inel }}=$ total inelastic pp cross-section
$\mu_{\text {inel }}=$ number of inelastic pp collision per bunch crossing
$\varepsilon=$ acceptance x efficiency of luminosity detector
$\mu_{v i s}=$ visible collision per bunch crossing
$\sigma_{v i s}=$ effective cross section
absolute luminosity measurement
determined from dedicated measurements using the Van der Meer scan (Run 1-2) or Beam Gas Imaging (Runl)methods
relative luminosity measurement consists in counting interactions, the specific observable depends on counter

Absolute luminosity

- Van der Meer (VdM) scans performed once per year and per energy in dedicated LHC fills
- beams separated on the transverse plane in steps Δx and Δy
- μ measured per step per counter
- assuming XY factorizability, the visible cross-section per counter is given by

$$
\sigma_{v i s}=\frac{\int \mu\left(\Delta x, y_{0}\right) d \Delta x \cdot \int \mu\left(x_{0}, \Delta y\right) d \Delta y}{\mu\left(x_{0}, y_{0}\right) N_{1} N_{2}}
$$

with $N_{1,2}$ the number of particles in the 2 bunches, determined with a combination of LHC measurements

Absolute luminosity

Run 3

- in Run 2 already used 2D VdM scan for the central region, to reduce systematic related to factorizability assumption
- will become default in Run3
- in Run 3 > number of pp interactions wrt Run 1-2: need to verify linearity of counters from typical $V d M \mu<1$ to $\mu \sim 5$ during physics
- introduce emittance scans at the beginning of each fill = mini VdM scan (only central region) at ~physics conditions

2D VdM scan in the region mostly contributing to the integral

Absolute luminosity

Run 3

- in Run 2 already used 2D VdM scan for the central region, to reduce systematic related to factorizability assumption
- will become default in Run3
- in Run 3 > number of pp interactions wrt Run 1-2: need to verify linearity of counters from typical $\vee d M \mu<1$ to $\mu \sim 5$ during physics
- introduce emittance scans at the beginning of each fill = mini $V d M$ scan (only central region) at ~physics conditions
code to automatise analysis of emittance scans being developed
Check for 2D-fit fill6864_CaloEt_bx907

Relative luminosity

Possible methods:

- linear
- $\log 0$
- μ is calculated from the fraction of empty events (e.g. \# VELO tracks < 2 or \# of vertices $=0$) assuming Poisson statistics

$$
\mu=-\log P(0)=-\log \frac{N_{0}^{\text {trig }}}{N^{\text {trig }}}
$$

- reduces possible non-linearities and instabilities in lumi counters
- Probability Generating Functions (PGF)

$$
\mu \propto \log \frac{\sum z^{N_{j}}}{n} \quad \begin{aligned}
& \text { with } \mathrm{n} \text { the number of events and } \mathrm{z} \text { can be } \\
& \text { tuned to suppress busy events (link) }
\end{aligned}
$$

RuN 1-2: log0 method since $\mu \sim 1$
Run 3: given the $5 x \mu$, it is difficult to say what will be the most accurate method between log0 (with higher trigger rate than previous runs) and PGF

Counters

- main characteristics of counters: linearity (response vs μ) and stability (efficiency vs time) - calibration of the individual detectors fundamental: eg for VELO IV scans, CCE scans, HV tuning...
- any dependence on pile-up, LHC filling scheme, bunch spacing... needs to be evaluated and either corrected for or source of systematics
- high level quantities (e.g. tracks) are usually cleaner than low level ones (e.g. hits)

Run 1-2

Counters

Run 3

PLUME: the first dedicated lumi counter of LHCb!

mainly motivated by online purposes

- luminosity should be provided to the LHC every few seconds (~3s)
- it should be measured with a precision of order 10\%
- it should be provided at all times even if LHCb is not taking data or is off
- LHC requires a luminosity measurement per bunch
detector fully installed
- hodoscope of 2×24 counters
- each counter consists of a PMT and a quartz tablet
- it measures the rate of coincidences between the 2 layers
- background rate from eb, be, (ee) is subtracted
 during online operation

Counters

Run 3

proposals from subdetectors experts

ECal \& HCal

Counters

KCal - C. Mancuso

VELO - A. Beck

BCM - H.Stevens

electron beam current through sensitive area ${ }^{10}{ }^{2} / \mathrm{pA}$

SciFi - P. D'Argent

for more details see the lumi counter meeting

Counters

to exploit the advantages of the log0 method despite $5 x \mu$:

- counters from regions with low occupancy
- these regions are typically less affected by radiation damage and hence the response is more stable in time/less calibrations needed
- high granularity
- with the advantage of monitoring performances in different region independently and in the long-term

Counters

Some physics channels are good candidates to monitor the integrated lumi!

- number of $Z \rightarrow \mu \mu$ candidates can be used as counter
 - can not be calibrated directly in VdM (one step takes 10s only), but could be cross-
calibrated wrt any other counter
- triggered in standard physics stream:
- more affected by biases (for ex: dependence of μ reconstruction efficiency on pile-up)
- but will have very different systematics

Counters

why do we need so many counters?
having many observables and as different as possible from each other is crucial to

- cross-check their stability in time
- to correct for various efficiency dependences and/or assign systematics

Run 3: we plan to have online monitoring comparing the various counters
Additional advantages for detectors:

- excellent measure of the performance of the detector
- long-term stability control
- absolute comparison of performance across all years, guaranteed by Van der Meer scans

Online vs Offline

Online luminosity

- needed for lumi levelling, reporting of quantities to both LHC and LHCb (center and width of luminous region, beam shapes, integrated delivered/recorded lumi...), monitoring
- hierarchy of counters: the first one provides μ, the rest for monitoring (Run1, 2 LO CaloE E_{T}, Run 3 PLUME)
- required precision: <10\%
- in Run 3 per bunch lumi

Offline luminosity

- needed for physics analyses
- most stable counter (Run 1,2 VELO tracks for pp) used for lumi determination, the rest for cross-checks, corrections and systematics
- required precision: best possible (for pp reached $\leq 2 \%$, for PbPb $\sim 4 \%$)
- measured per bunch

Online vs Offline

Online luminosity

- needed for lumi levelling, reporting of quantities to both LHC and LHCb (center and width of luminous region, beam shapes, integrated delivered/recorded lumi...), monitoring
- hierarchy of counters: the first one provides μ, the rest for monitoring (Run 1,2 LO CaloET, Run 3 PLUME)
- required precision: <10\%
- in Run 3 per bunch lumi

Counters via ECS

To cross-check and as back-up for PLUME

- VELO FPGA clusters: per bunch
- muon hits (luMUONmeter): maybe can "sync" with bunches
- RICH currents
- BCM current

Offline luminosity

- needed for physics analyses
- most stable counter (Run 1,2 VELO tracks for pp) used for lumi determination, the rest for cross-checks, corrections and systematics
- required precision: best possible (for pp reached $\leq 2 \%$, for PbPb $\sim 4 \%$)
- measured per bunch

Counters via HLT

For offline analysis and online monitoring

- randomly triggered crossings
- 30 kHz rate
- background subtracted from ee, be, eb crossings

Plan

- first VdM scan expected in September

before the VdM scan:

- emittance scan as early as possible to calibrate PLUME and any detector already commissioned (likely ECal, HCal, Muons)
- trigger in passthrough mode
- code for absolute calibration in preparation by the PLUME team
- monitoring jobs need to be setup
- put in operation levelling application
- add inputs from other detectors as soon as commissioned
- cross-calibrated with PLUME or with following emittance scans
- HLT1 lumi line currently in preparation (see S. Xian talk)
after VdM scan: at least 3 months needed to perform the analysis aiming at 5% uncertainty
- input from LHC should be the same
- but our detectors are new: stability and efficiency dependences need to be determined, corrections applied and systematics calculated

Data flow

ODIN	generate the triggers	30 kHz random trigger \longrightarrow shared as 70:15:10:5 in
HLT 1	compute counters, select and "stream" events	:be:eb:ee
Monitoring	analyse and publish	
HLT 2	compute more counters, "nanofy" and stream events	nano-events only contain lumi counters

Run 1: lumi and uncertainty stored in lumi tuple
Run 2: Iumi per run available in a .csv file from the twiki (it's responsibility of the user to check if all the data were processed)

Run 3: have a tool (outside DaVinci) to compute lumi based on measurements per run and actual files processed

- implementation still to be defined

Summary

- several changes expected in Run 3, due to the different running conditions and especially a new detector
- both online and offline luminosity require absolute calibration
- at the moment this is foreseen to be determined with VdM scan in September (several months for the processing of data needed after that)
- prior to VdM scan, emittance scans
- first emittance scan to be performed as soon as possible to calibrate PLUME and any detector already commissioned (likely ECal, HCal, Muons)
- other detectors will be cross-calibrated with PLUME afterwards (or with following emittance scans)
a lot of activities ongoing in preparation for Run 3!

Back up

Beam Gas Imaging

- Beam Gas Imaging (BGI) unique to LHCb thanks to SMOG
- alternative method for absolute calibration by recording beam images with beam-gas interactions
- (partly) different systematics than VdM: combining the 2 methods reduces the uncertainty on the cross-section
- used in Run 1, since then no sufficient person power: for Run 3 no one available yet

What contributes to offline precision?

- Iumi uncertainty is the dominant in many cross-section measurements

Method	Absolute calibration			Relative calibration	Total
	$\sigma_{\text {vis }}(\mathrm{mb})$	Weight	Uncertainty	uncertainty	uncertainty
$p p$ at $\sqrt{s}=8 \mathrm{TeV}$					
BGI	60.62 ± 0.87	0.50	$1.43 \%(0.59 \%)$		
VDM	60.63 ± 0.89	0.50	$1.47 \%(0.65 \%)$		1.16%
Average	60.62 ± 0.68		1.12%	0.31%	
$p p$ at $\sqrt{s}=7 \mathrm{TeV}$					
BGI	63.00 ± 2.22	0.13	$3.52 \%(1.00 \%)$		1.71%
VDM	60.01 ± 1.03	0.87	$1.71 \%(1.00 \%)$		
Average	60.40 ± 0.99		1.63%	0.53%	

\geq offline luminosity with $\sigma=2 \%$ for pp Run 2 at 13 and 5.02 TeV (only VdM scan) document in preparation

- lumi uncertainty mainly comes from the uncertainty on absolute calibration
- 3 main sources to absolute calibration uncertainty:
- X-Y non-factorizability
- beam orbit drifts: monitored by Beam Position Monitors (BPMs) around LHC
- beam-beam interaction (bunch deformations): model based corrections

N12 determination

- total beam intensities are determined from total beam currents (slowly) measured with high accuracy by LHC direct-current current-transformers (DCCT),
- background (1-2\%) in nominally empty LHC bunches or buckets is determined either with LHC equipment (BSRL) and/or with beam-gas interactions in LHCb and subtracted
- charge fraction per bunch is measured with LHC fast transformers (FBCT)

typical $\mathrm{N}_{1} \mathrm{~N}_{2}$ uncertainty: $\sim 0.2-0.3 \%$

Beam structure

RF buckets and bunches

Online luminosity

Lumi leveling

- target value of μ set by LHCb
- Iumi leveling application requests adjustments when measured $\mu>|3| \%$ from target
- based on the info provided LHC tunes beams separation

Reporting

- in real-time for monitoring
- offline for analysis
- quantities needed for both LHC and LHCb:
- μ per bunch
- integrated delivered and recorded lumi
- center and width of luminous region (x, y, z)
- beam shapes (x, y) for beam 1 and 2

What's to be done for Run 3?

- framework to provide luminosity is solid, only some adaptations needed
- update to the new sources of μ
- add monitoring
- set-up a framework to generate automatically reports fill-by-fill

Efficiency correction

efficiency correction

- efficiency of \# of VELO tracks or vertices depends on z position of the luminous region

PbPb luminosity

choice of best lumi counter

- different conditions wrt pp interactions:
- little activity in the detector (spectra dominated by EM interactions)
- hard interactions with a vertex, significant $\mathrm{E}_{\boldsymbol{T}}$ in calo and many tracks are rare

cuts defining an empty event must be minimised
- in pp the best counters are VELO tracks and vertices
- in PbPb:
- stats too low to use vertices
- n SPD hits depends on material activation
- n VELO tracks non-linear (~2\%)
- n PU hits linear and high stats

