Overview of $K_S \rightarrow 4l$ studies

EMTF session LHCb Starterkit

Sergio Arguedas Cuendis on behalf of the $K_s \rightarrow 4l$ group 14/03/2022

Main goals

- Study the $K_s \rightarrow \pi^+\pi^-e^+e^-$ decay and search for $K_s \rightarrow 4l$ decays.
- New physics: Possible dark matter signals in this type of decays <u>https://arxiv.org/abs/2012.02142</u>.
- Major improvement for K_s studies in Run 3: Removal of LO
- Development of trigger lines for $K_s \rightarrow 4l$ decays.

HLT2 lines

- Most work so far was done for:
- 1. $K_s \rightarrow 2(\mu^+\mu^-)$
- 2. $K_s \rightarrow 2(e^+e^-)$
- Normalization channel:
- 1. $K_s \rightarrow \pi^+\pi^-e^+e^-$
- Understand reconstruction and selection of low pT electrons.
- BR measured by NA48: BR = $4.79 \pm 0.15 \cdot 10^{-5}$
- Other channels:
- 1. $K_s \rightarrow \pi^+\pi^- \mu^+\mu^-$
- 2. $K_s \rightarrow \mu^+\mu^- e^+e^-$

$K_s \rightarrow 2(\mu^+\mu^-)$

Muon candidates were required initially to have long tracks.

No cuts done for transverse momentum.

Values chosen to ensure they come from the same vertex. Requirements applied on muon candidates with long tracks.

Variable	Units	Requirement
Track Ghost Prob		< 0.4
μ IP	mm	> 0.2

Requirements applied on 4-body combination of muon candidates.

Variable	Units	Requirement
$\mu^+\mu^-\mu^+\mu^-$ max DOCA	mm	< 1.0
K_s^0 Vertex $\chi^2/ndof$		< 25.0
K_s^0 BPVDLS		> 2.0
K_s^{0} invariant mass	MeV/c^2	\in [297.614, 697.614]

4

$K_s \rightarrow 2(\mu^+\mu^-)$

K_s invariant mass for MC simulations.
 Plot made by JJ Bermudez

- The line efficiency was checked for Monte Carlo simulations using HLTEfficiencyChecker tool:
- All events:
- 1. $\epsilon = 4.4 \cdot 10^{-4}$
- 2. TOS $\epsilon = 2.2 \cdot 10^{-4}$
- Can reconstruct children:
- 1. $\epsilon = 0.081 \pm 0.013$
- 2. TOS $\epsilon = 0.074 \pm 0.012$

 $K_s \rightarrow 2(e^+e^-)$

Variable	Cut
Min pT	$> 100 {\rm MeV}$
Max Track Ghost Prob	< 0.5
Min PIDe	> 1.0
Min IP	$> 0.2 \mathrm{mm}$

Long tracks electrons with bremsstrahlung corrections.

Variable requirements applied to the electron/positron selection

 A minimum transverse momentum cut of 100 MeV.

Variable	Cut
Max DOCA	< 1.0mm
K_s^0 Vertex χ^2 per dof	< 25.0
K_s^0 BPVDLS	> 2.0
K_s^0 invariant mass	$\pm 200 { m MeV}$

Cuts used for the 4-body combiner of electrons/positrons

Values chosen to ensure they come from the same vertex. $K_s \rightarrow 2(e^+e^-)$

- K_s invariant mass for MC simulations. Plot made by S. Quevedo
- Low pT electron difficult to reconstruct.

- All events:
 ε = 1.91 · 10⁻²
- Can reconstruct children:
 ε = 3.92 · 10⁻²
- Ongoing work with truth matching information.

$K_s \rightarrow \pi^+\pi^-e^+e^-$

Preliminary K_s invariant mass for MC simulations. Plot made by JJ Bermudez

- All events:
 1. ε = 7.5 · 10⁻⁴
- 2. TOS $\epsilon = 4.2 \cdot 10^{-4}$
- Can reconstruct children:
- 1. $\epsilon = 0.040 \pm 0.007$
- 2. TOS $\epsilon = 0.037 \pm 0.007$

 $K_s \rightarrow \pi^+\pi^-e^+e^-$ Run 2 studies

- K_s peak can be seen in the invariant mass plot.
- Discrepancy between number of expected events and observed:

$$\begin{split} N_{obs}^{sig} &= 184 \pm 22 \\ N_{exp}^{sig} &= 1200 \pm 300 \end{split}$$

Next steps

- Add truth matching to the $K_s \rightarrow 2(e^+e^-)$ line.
- Check the efficiency of the current HLT1 lines.
- Compute the total efficiency of the trigger line and calculate the sensitivity we could achieve for the 100 pb⁻¹ challenge.
- ▶ Have a better understanding and control of the normalization channel.
- Add downstream tracks.