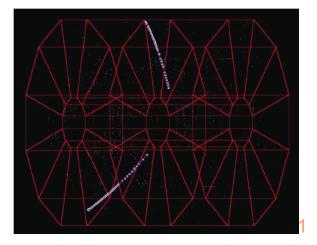
Imaging the gluons in a nucleus using high-energy photons

Spencer Klein, LBNL

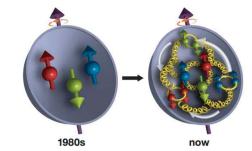
Presented at the Workshop da Rede Nacional de Fisica de Altas Energias (RENAFAE), April 25-28, 2022

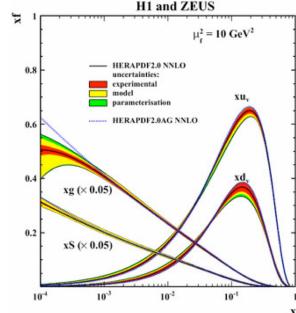

Quarks and gluons in nuclear matter

- Photonic probes of nuclei
- Ultra-peripheral collisions at RHIC and the LHC
- Measuring gluon densities

Imaging and gluon spatial distributions

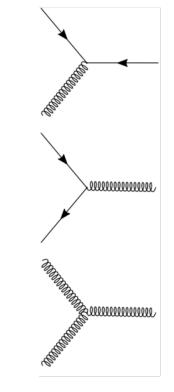
- The Electron-Ion Collider
- Conclusions

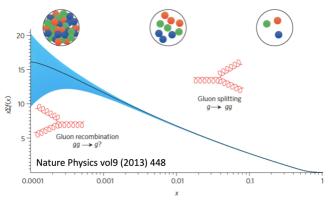



Quarks and gluons in protons

Simple proton = 3 valence quarks

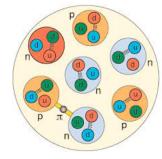
- Surprisingly accurate explains proton spin
- 3 valence quarks + gluons + sea quarks
- Parton distributions are quantified by




- Bjorken-x: Fraction of proton energy carried by parton
 - In infinite energy frame
- Q²: Characteristic of probe a measure of microscope power
- At lower x or higher Q², more partons are visible
 - Governed by evolution equations

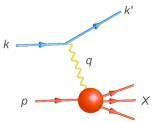
Quarks and gluons at high densities

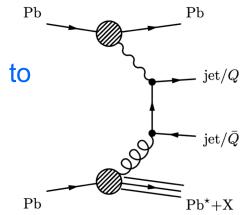
- Parton densities rise due to splitting
- At high densities, parton recombination is also possible
- At high enough densities, the rates of splitting and recombination will be equal
 - Equilibrium, known as saturation
- Other phenomena may be possible
 - Colored glass condensate a classical gluon field
 - Originally predicted new phenomena, such as monojets in heavy-ion collisions
 - Now is mostly considered a calculational tool
- Understanding high-density partonic matter is a key goal of nuclear physics
 - "Cold nuclear matter"
 - Background to understanding signatures of the quark gluon plasma

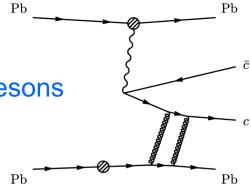


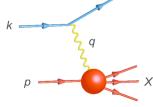
Quarks and gluons in nuclei

- Nucleons interact via π exchange
 - Nucleons may also interact via parton exchange
- Parton distributions are altered when an isolated nucleon is placed in a nucleus, adjacent to other nucleons
 - Quantified by changes in parton distributions
- Different phenomena in different Bjorken-x ranges
 - Fermi motion of nucleons in nuclei
 - "EMC effect," likely due to nucleon-nucleon correlations
 - Shadowing gluon recombination
 - Antishadowing pileup
- With the higher density, nuclei are more likely to exhibit highdensity phenomena, like saturation
 - Phenomena emerge at larger Bjorken-x
 - Increase is by "Oomph factor" ~ A^{1/3} ~
 - 6 for gold/lead






Measuring gluon distributions


- In Deep Inelastic Scattering, an emits a virtual photon which interacts with the nucleus
 - Sensitive to quark distributions in nucleus

- x and Q² determined from scattered electron
- y = inelasticity=fraction of electron energy transferred to hadrons
- Gluons may be inferred from evolution of quark distributions
 - How does the quark density change with x or Q²?
- Direct measurements are highly desirable
 - Reactions that proceed via gluons
 - Photoproduction of dijets, open charm, or vector mesons
 - Single gluon exchange, but experimentally harder
 - Photoproduction of vector mesons
 - Experimentally simple, but theoretical complications

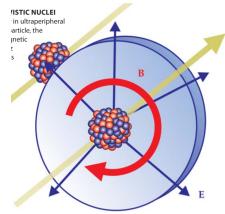
Photoproduction in ultra-peripheral collisions

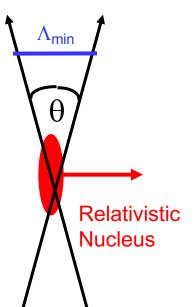
- Ultra-peripheral collisions (UPCs) occur when b>~2R_A, so there are no hadronic interactions
 - Must account for b>2R_A when computing photon-nucleus luminosity
- Photons are nearly real (Q² ~ 0)
 - ♦ Hard scale (Q²) comes from final state
 - e. g. for $J/\psi Q^2 \sim (M_V/2)^2$
- Two-photon reactions are also studied (e. g. $\gamma\gamma$ ->e⁺e⁻)
 - Physics + test of the photon flux calculations
- Electromagnetic interactions have also been seen accompanied by hadronic interactions

Photons from relativistic nuclei

- Perpendicular E and B fields -> just like a photon field
 - Fourier transform E(x,b)-> E(k,b) and quantize
 - Equivalent photon approximation
- Pancaked E & M fields: opening angle $\theta = 1/\gamma$
- $k_{max} = c/\lambda_{max} = \gamma$ hbar c/b

$$N(k,b) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(x) + \frac{K_0^2(x)}{\gamma^2} \right)$$


- x=kb/γ hbar c
 - + x<1: N ~ $K_1^2(x)$ ~ 1/x²
 - x > 1: N is exponentially suppressed
 - Note: 1/b² dependence

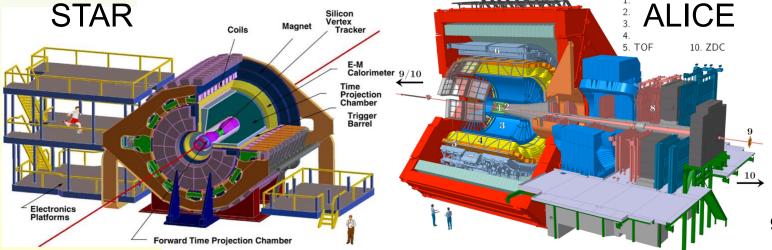

Integrate over d²b: with b>2R_A (no nuclear collision)

$$N(k) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(u) + \frac{K_0^2(u)}{\gamma^2} \right)$$

• $u = \gamma$ hbar c/2R_A

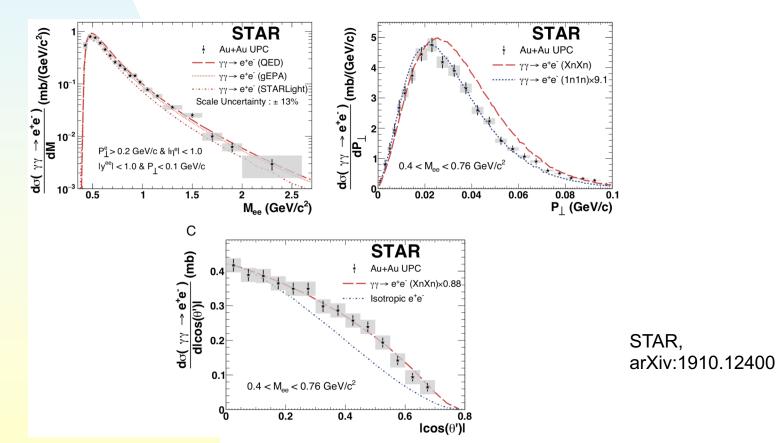
7

UPC collision energies


- Maximum energies depend on species
 - Energy/nucleon scales with charge/mass ratio
 - Energy/nucleon for Pb ~ 0.4*E_{proton}
- Photon energy depends on hbar/R_A
 - Much higher energy with proton beams
- UPC cross-sections can scale as Z⁴, Z²A² to Z²A^{4/3}
 - For lighter final states higher rates with heavy ions
- The LHC is the energy frontier for photons
 - Can reach down to Bjorken x ~ 10⁻⁶

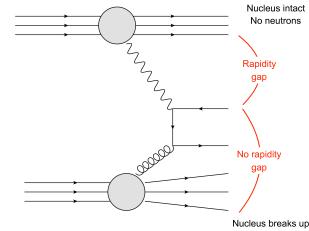
Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy W _{γp}	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV
*LHC at full energy √s=14 TeV/5.6 TeV				

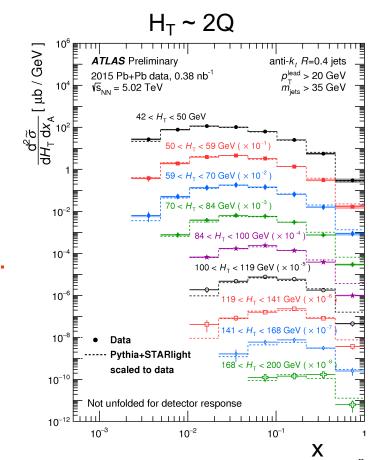
Observing UPCs


- Most studied UPC final states are simple: J/ ψ -> e⁺e-, ρ -> $\pi^+\pi^-$, etc.
- Need to see these charged particles + "Nothing else"
 - "Nothing else" requires large angular acceptance, plus coverage down to small-ish (~100 MeV/c) transverse momentum (p_T)
 - Hermeticity, down to low p_T

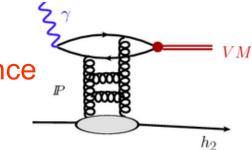
- Constraint: $\Sigma p_T < 100 \text{ MeV/c}$ reduces backgrounds
- Triggering is one of the main challenges in UPCs
- The nuclei may also dissociate, via additional photon exchange
 - Need zero degree calorimeters to detect neutrons from breakup
- All 4 LHC detectors, plus STAR and PHENIX at RHIC have studied UPCs

STAR γγ->ee


- Excellent test of equivalent photon paradigm
- Good agreement with STARlight Monte Carlo
 - STARlight == Monte Carlo w/ Equivalent Photon approx.
 - Photons are real, not virtual (no mass, but should not be important)
- Except pair <p_T> is larger, likely due to limits and biasing of b


Photoproduction of dijets

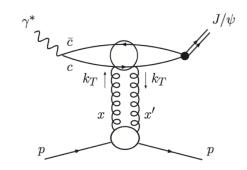
- Single gluon exchange
 - theoretically clean
 - One rapidity gap
- x depends on dijet mass & rapidity
 - ♦ 10⁻² < x < 1</p>
- Jet masses give Q²
 - ♦ 1600 GeV² < Q² < 40,000 GeV²
 - Data vs. STARlight/PYTHIA hybrid
 - Some differences
 - Detector?
 - Nuclear modifications to pdfs?
- Unfolding in progress, to probe gluon dist.
 Room to expand kinematic reach



Exclusive vector meson photoproduction

- Occurs via colorless 'Pomeron exchange'
 - Require >=2 gluon exchange for color neutrality
 - Gluon ladder
- Light meson production via vector meson dominance
 - ρ, direct π⁺π⁻, ω, ρ'
- Heavy meson production treated with pQCD
 - J/ψ, ψ', Y(1S), Y(2S), and Y(3S)
- 3 targets, 3 coherence lengths and 3 p_T scales
 - Coherent: nucleus remains intact. $p_T < \sim hbar/R_A \& \sigma \sim A^2$
 - Incoherent: nucleus breaks up; protons remain intact. p_T <~ hbar/R_p
 - Proton dissociation: struck proton breaks up. $p_T \sim \Lambda_{QCD} \sim 300 \text{ MeV}$
- Rapidity maps into photon energy
 - $k = M_V/2exp(\pm y)$
 - For coherent: twofold ambiguity which nucleus emitted the photon?
 - Cross-section is sum of 2 directional cross-sections
 - γ + Odderon (3-gluon state) could lead to tensor mesons

V. Goncalves, Eur. Phys J C79, 408 (2019)

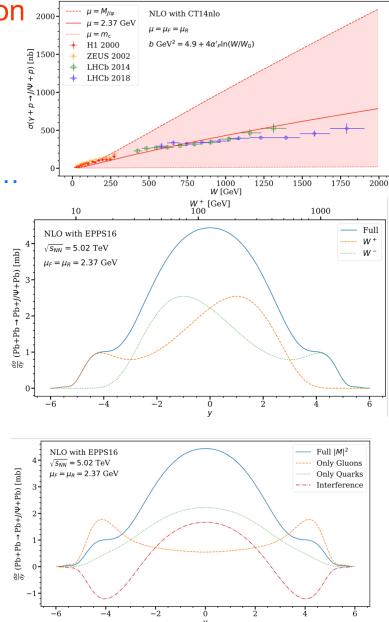


A/A*/Ax

VM photoproduction in LO pQCD

In 2-gluon model, leading order pQCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \ p\right)\Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x,\bar{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2}\right).$$



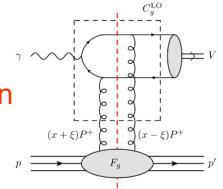
- With $\bar{Q}^2 = (Q^2 + M_{J/\psi}^2)/4$, $x = (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2)$
 - Vector meson mass provides hard scale
- Some caveats
 - pQCD factorization does not strictly hold
 - Two gluons have different x values (with x' << x << 1)
 - Use generalized (skewed) gluon distributions smallish correction.
 - Can do exactly with Shuvaev transform
 - Photon is not pure $q\bar{q}$ dipole
 - Choice of scale μ

J/ψ photoproduction in NLO

- Some surprises in a new NLO calculation 20
- Very large scale uncertainty
 - Hope for reduction using some tricks
- σ_{NLO} ~55-70% below σ_{LO}
 - Previous LO calculations matched data...
- Multiple peaks in d_o/dy for UPCs
 - Note photon directional ambiguity
- NLO gluon contribution partly cancels LO gluon contribution
 - Quark contribution is important
- Different parton distribution fits give different results
 - Real part of gluon amplitude
- How well do uncertainties cancel when comparing proton and ion data?

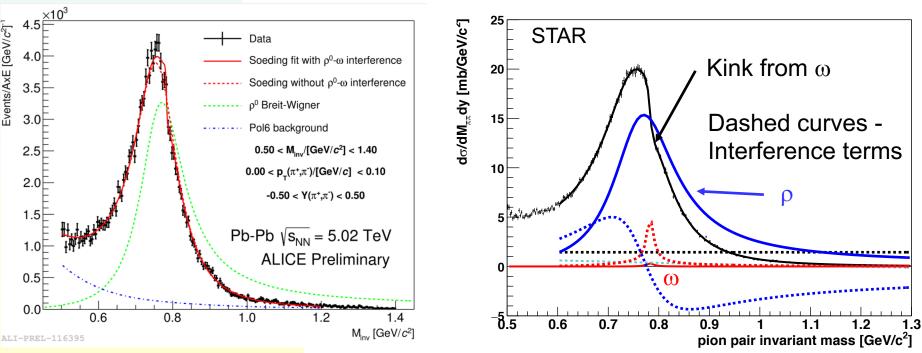
K. Eskola et al., arXiv:2203.11613

The dipole approach


- Needed to incorporate transverse size into calculation
 - Important for nuclei

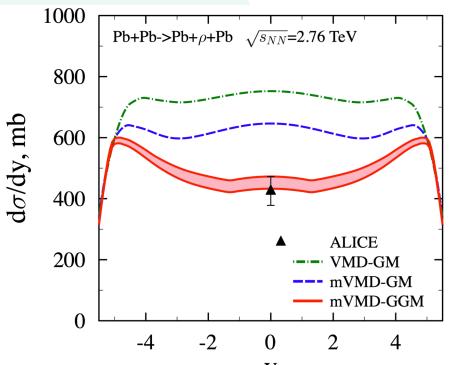
- Start with basics: $\sigma = |\langle \Psi_{\gamma} | M | \Psi_{V} \rangle|^{2}$
- Treat the qq pair as a dipole with size r
 - Need VM and photon wave functions, matrix element as f(r)
 - $\sigma \sim r^2$; r scales with 1/Q, but relationship is not simple
 - Different matrix elements for different nuclear models
 - pQCD, shadowing, colored glass condensate, etc.

$$A(K,\Omega) = 2i \int d^2 \mathbf{r}_T \frac{dz}{4\pi} d^2 \mathbf{b}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T/\hbar}$$
$$\times \Psi^*(\mathbf{r}_T, z, Q^2) \Psi_V(\mathbf{r}_T, z, Q^2) N_\Omega(\mathbf{r}_T, \mathbf{b}_T)$$


Dipole approach allows impact-parameter dependent calculations

- Can calculate dσ/dt for different nuclear conditions
 - Different effective target shapes at different x,Q²

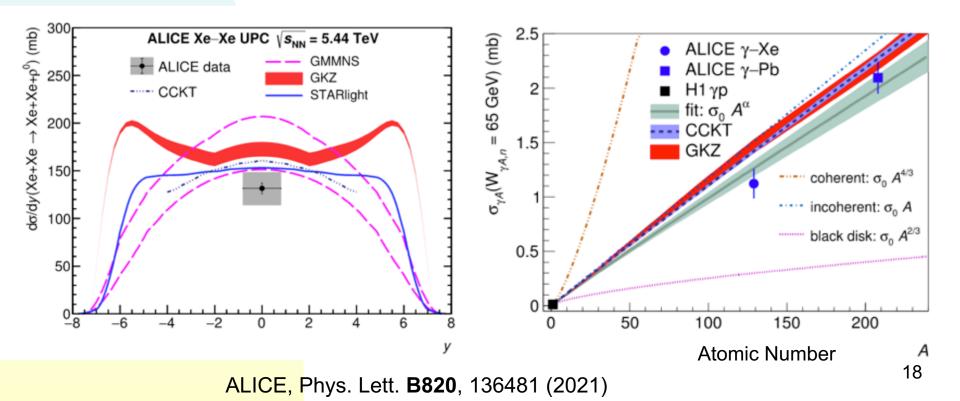
ρ^0 photoproduction


- **294,000** exclusive $\pi^+\pi^-$ with $p_T < 100$ MeV/c seen by STAR
- Mass spectra fit by ρ^0 + direct $\pi\pi$ + ω -> $\pi\pi$
 - ω required for acceptable fit
 - Ratios & phase angle consistent with low-energy fixed-target studies
 - Pomeron exchange @ high energies; meson exchange at lower

STAR: PR C96, 054904 (2017); ALICE: arXiv:2002.10879

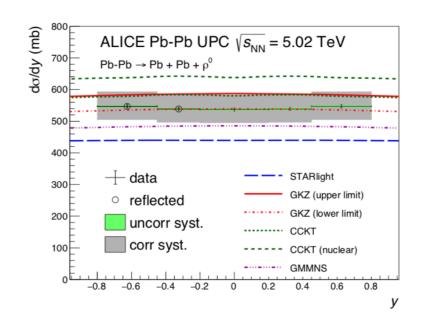
Coherent ρ^0 photoproduction & the Glauber model

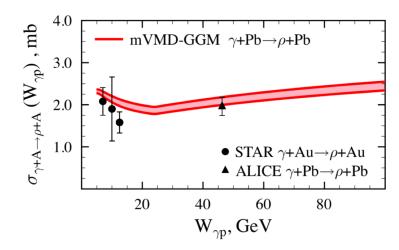
- In the Glauber model, dipoles in a heavy nucleus may multiple scatter (interact many times), but the dipole does not change as it travels through the nucleus. Can also allow other on-massshell vector mesons.
- In the Glauber Gribov model, the dipole may take on excited virtual intermediate states as it travels through the nucleus.
 - Needed to explain the data



Glauber VMD Glauber w/ Generalized VMD Glauber-Gribov

L. Frankfurt, V. Guzey and M. Strikman, Phys. Lett. B752, 51 (2016)

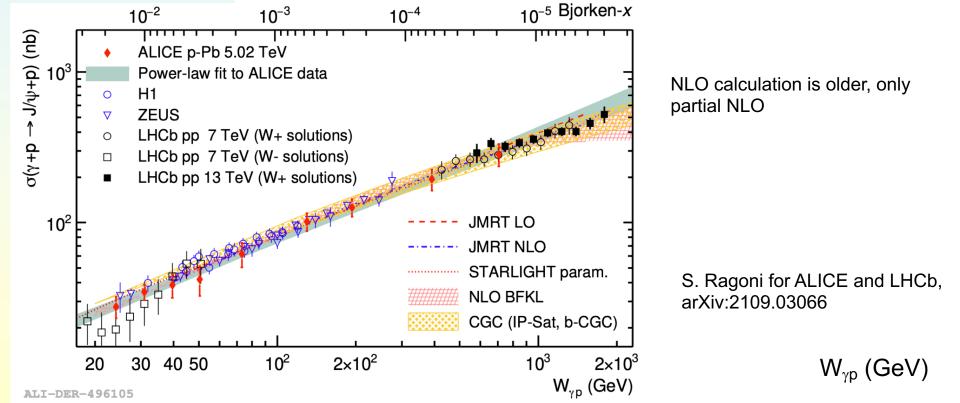

ρ^0 photoproduction as a function of target


- From a 6-hour XeXe run in 2017
- Trigger, analysis similar to PbPb
- Cross-section consistent with Glauber-Gribov calculations
- From p, Xe, Pb, σ ~ A^{0.96 ± 0.02}
 - Significant shadowing; $\sigma \sim A^{4/3}$ in absence of shadowing

ρ^0 cross-section

- M_ρ too low for pQCD
 - Use dipole or Glauber calculation, implicitly or explicitly tuned to HERA data instead
- do/dy found for coherent photoproduction
 - Direct ππ removed
- σ above 'STARlight' prediction
 - i. e. below Glauber calculation
- σ in agreement with quantum Glauber model that includes a correction for high mass dipole fluctuations (inelastic diffraction)
 - Fluctuations matter

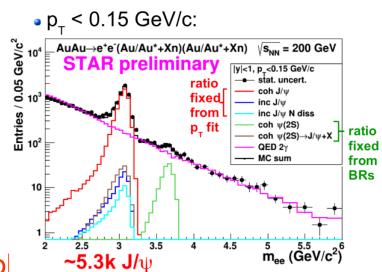
ALICE: arXiv:2002.10879; L. Frankfurt et al., Phys. Lett. B752, 51 (2016)

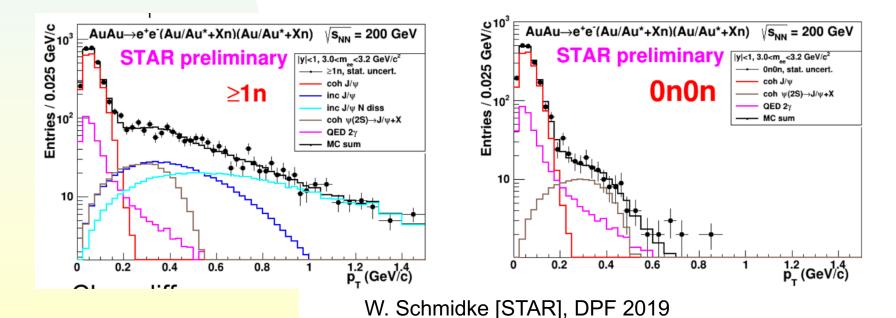

Heavy quarkonium photoproduction on ion targets

- There is no HERA data with ion targets, so we know little about parton distributions for x<10⁻³
 - Some data from LHC pA/AA interactions
- Probe for nuclear gluon distributions for $x < 10^{-3}$ at $Q^2 = (M_{VM}/2)^2$
- Usually measure/calculate suppression relative to proton targets
 - Many theoretical uncertainties cancel
- Impulse approximation calculation sometimes used as reference
 - Treats target as a collection of independent nucleons
 - Replaces missing proton data at correct \sqrt{s}
- Shadowing is expected, because a single $q\bar{q}$ dipole may interact with multiple nucleons in a heavy target
 - "Leading twist" shadowing multiple scattering
 - Nuclear shadowing
 - Gluon shadowing would appear as an additional suppression

σ(γp-> J/ψ p)

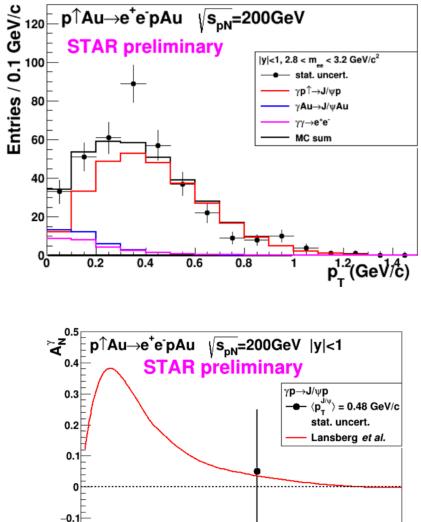
- Map rapidity to photon energy, with a 2-fold ambiguity $k=M_V/2 \exp(\pm y)$
- **Data up to W**_{γp} = 1.5 TeV 5 times the HERA maximum
 - Fairly close to a power law, with possible slight downturn
 - ► Expected in lowest order as long as g(x) ~ x⁻⁴Λ
- ALICE: In pA collisions, proton is usually target


LHCb: 2-fold photon direction ambiguity; use HERA data to unfold



J/ψ photoproduction on gold at RHIC; x ~ 10⁻²

- AuAu and polarized p-Au collisions
- Data with a calorimeter trigger
- J/ ψ , ψ ' ->e⁺e⁻ and $\gamma\gamma$ ->e⁺e⁻


- γγ->e⁺e⁻ fraction larger than in pp/pA
- Coherent & incoherent photoproduction
- ♦ M_{ee}, p_{Tee} fit to mixture
- Events with neutrons are more likely incol

Polarized J/ ψ photoproduction at STAR

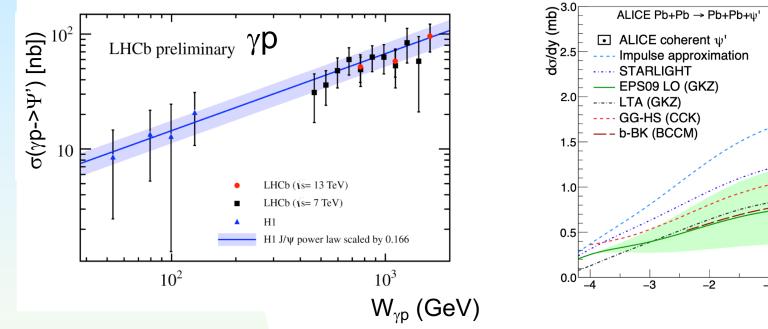
- Sensitive to polarized GPDs (generalized parton distributions), which probe the transverse position of partons with the nucleus
 - Is gluon polarization dependent on position within nucleus?
- From polarized p on Au collisions
 - Dominated by photon-from-gold
 - p_T cut improves separation
 - Polarized proton target
- Look at scattering asymmetries, which depends on W_{γp} and p_T
- 1st measurement; proof of principle

W. Schmidke [STAR], DPF 2019

-0.2

10

15


 $W_{\gamma p}^{35}$ (GeV)

25

20

30

ψ ' photoproduction on proton & lead targets

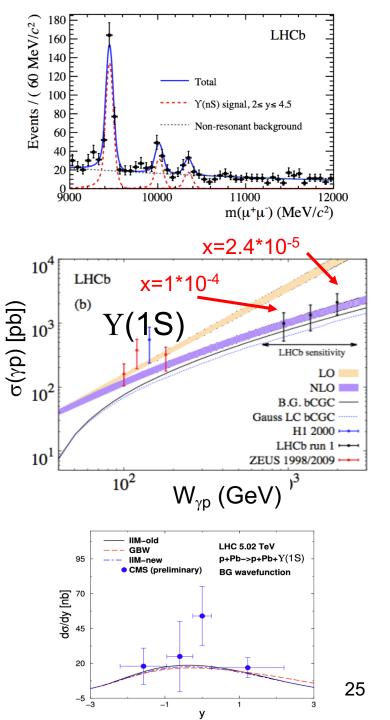
 γp is a good fit to power law Data is a bit below the partial NLO calculation LHCb data quality is more precise than HERA & extends to higher energy

 γA data shows moderate suppression, as the J/ ψ

R. McNulty [LHCb] ICHEP 2016; ALICE, Eur. Phys. J. C81, 712 (2021)

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

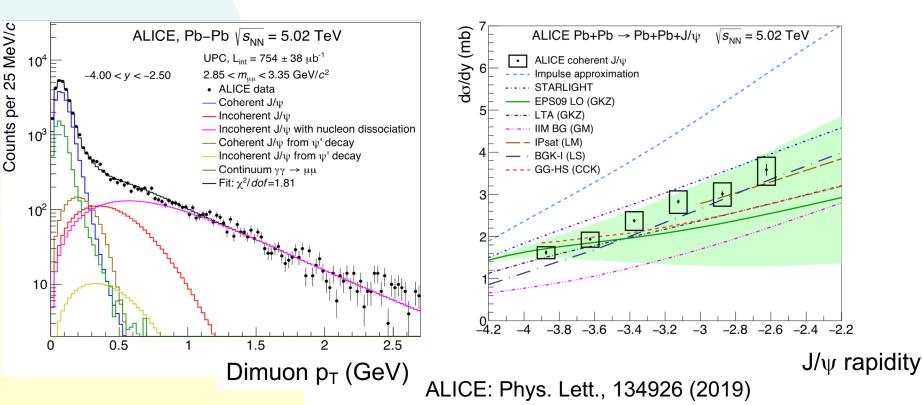
0


٧

-2

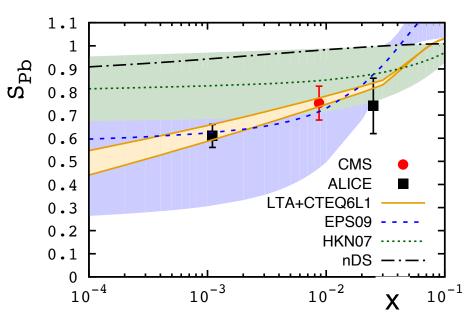
γ**p->**Yp

- Central (CMS) & forward (LHCb)
- Y(1S), Y(2S) & Y(3S) resolved
- Agreement with partial NLO calculation (Q² ~ 25 GeV²)
 - Same calculations match J/Ψ & Y data, at different Q²
 - Higher Q²-> less sensitivity to some theoretical uncertainties
- Larger difference between LO and partial NLO calcs. than J/ψ
- No evidence for saturation at low Q²


R. McNulty [LHCb] ICHEP 2016; M. Machado & CMS, in ISMD2017

ALICE PbPb-> J/ ψ at $\sqrt{s_{NN}}$ =5.02 GeV

- p_T spectrum measured out to 2.5 GeV/c
 - Coherent (Pb), incoherent (single N) & nucleon dissociation seen
- σ_{coherent} indicates shadowing ~ 0.8
 - Consistent with/slightly above EPS09 (&EPPS16) fits to worlds data
 - Smaller errors


Consistent with leading twist approximation (LTA) & other models

Nuclear Shadowing

- Compare ALICE & CMS data with PDF shadowing models
 - Use impulse approximation for proton reference
 - Normalize to HERA data to correct for higher order terms
 - 6 different parton distributions
- Consistent w/ 2012 leading twist approximation calculation
 - Except for MNRT07 parameterization
- More shadowing than HKN07 parameterization
- EPS09 parameterization fits data well
 - Error bars should shrink
 - Also true w/ EPPS'16
- No need for exotica e. g.
 - Colored glass condensate
 - Hard saturation cutoff

V. Guzey & M. Zhalov, JHEP 1310, 207 (2013) Frankfurt Guzey & Strikman, Phys. Rept. 512, 255 (2012) updated by V. Guzey & M. Strikman.

Beyond gluon densities: to spatial distribution and fluctuations

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

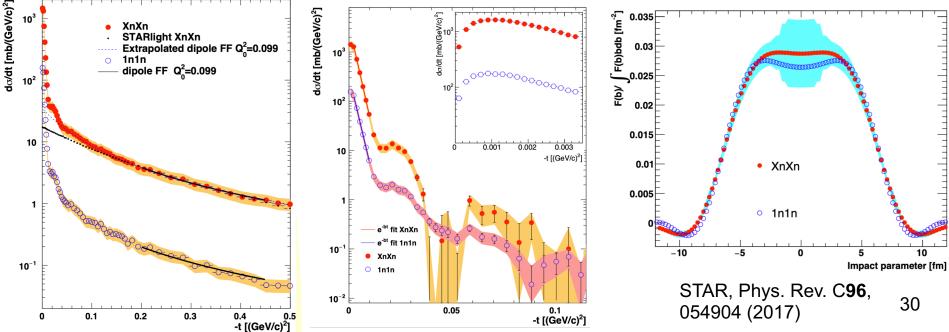
Mantysaari and Schenk, PRD 94, 034042 (2016)

Good-Walker and transverse interaction profiles

The coherent cross-section gives us access to the transverse spatial distribution of individual targets within the nucleus

$$rac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = rac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2$$
 Average amplitudes (Ω

- We can also write $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$
 - Usually work with $t = p_T^2 + p_z^2 \sim p_T^2$
- Because of exponential d_{\u0375}/dp_{\u0375} encodes information about the transverse locations of the interactions
 - without shadowing, this is the shape of the nucleus
- The two-dimensional Fourier transform of do/dt gives F(b), the transverse distribution of targets

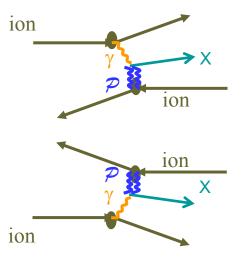

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

*flips sign after each diffractive minimum

 Multiple serious caveats – range of integration/ windowing finding diffractive minima, subtracting out photon p_T etc.

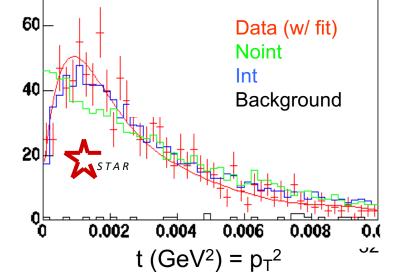
The STAR $\rho^{\rm 0}$ analysis

- 384,000 dipion events
- Fit $d\sigma_{incoherent}/dt$ in region of large |t| with a dipole form factor, extrapolate and subtract, leaving $d\sigma_{coherent}/dt$
 - Diffractive minima are visible
- 2-d Fourier tranform
- Blue band shows effect of varying |t|_{max} from 0.05 0.09 GeV²
 - Variation at small |b| may be due to windowing (finite t range)
 - Negative wings at large |b| are likely from interference


STAR fit to ρ^0 data

- Model includes photon p_T, ρ⁰ scattering on target, and interference between the two γ directions
- Cross-section $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$
 - The vector meson is linearly polarized along b
 - π^+ and π^- p_T preferentially follow b
 - $e^{ip \cdot b}$ gives a correlation between the $\rho^0 p_T$ & pion p_T
 - -> an angular modulation in p_T
- Model fits data well
 - Hadronic radii (w/ neutron skin) R_{Au} = 6.62±0.03 fm & R_U = 7.29±0.08 fm

Precision UPC physics!


STAR, arXiv:2204.01625

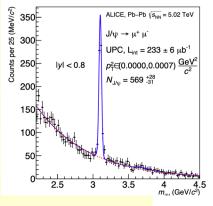
Photoproduction & the directional ambiguity

- Photoproduction can occur two ways
 - Either nucleus can emit a photon
- For coherent production (with no nuclear breakup) the two cases are indistinguishable
 - Except the photon & 'Pomeron' energies are swapped
- Add amplitudes for two directions: $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$
 - minus since $\rho, \omega, \phi, J/\psi$ are $J^{PC} = 1^{--}$
 - Plus sign in pbar p collisions
- σ suppressed for p_T < h/
 - ♦ p_T < ~ 30 MeV/c</p>
- Measured by STAR consistent with calculations

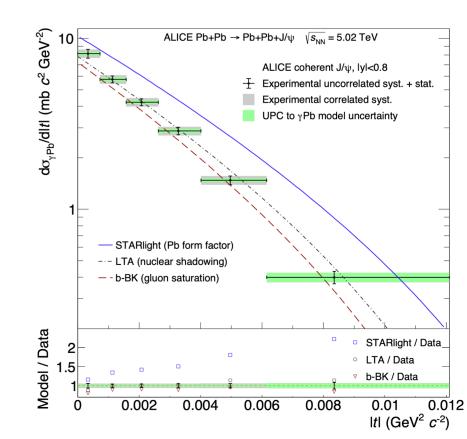
ion

10n

10n


10n

STAR: PRL 102, 112301 (2009)


ALICE: J/ ψ on lead targets

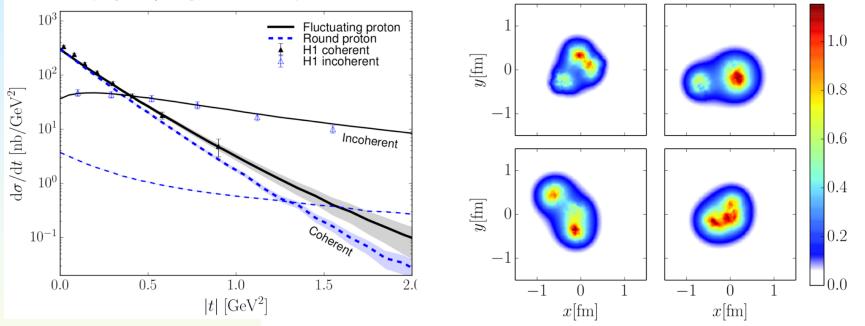
- ALICE has measured the p_T spectrum for J/_y photoproduction
- Resolution and photon pT removed via deconvolution
 - Photon p_T spectrum for 0 < b < ∞
 - When b is restricted (e. g. b>2R_A), <p_T> should increase
- p_T falls faster than expected from the Pb form factor
 - Effective nucleus is larger

 Consistent with leading twist approximation or a dipole model with gluon saturation

ALICE, Phys. Lett. B817, 136280 (2021)

Incoherent production and event-by-event fluctuations

The incoherent cross-section lets us measure the event-byevent fluctuations in the nuclear configuration, including the positions of individual nucleons, gluonic hot spots, etc.

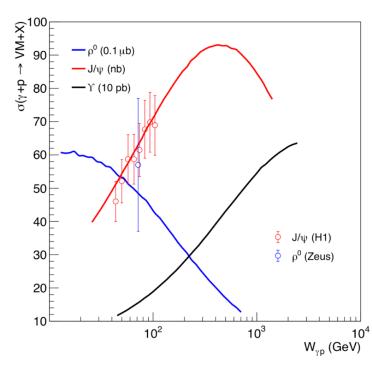

$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right)$$

- Probes the deviations from the mean.
- The connection between t and impact parameter is weaker than with coherent production, but this can be used to test models.

γ^* p->J/ ψ at HERA and gluonic hot spots

HERA data provides an application of the Good-Walker formalism

 $\gamma + p \rightarrow J/\Psi + p, W = 75 \,\mathrm{GeV}, Q^2 = 0 \,\mathrm{GeV}^2$

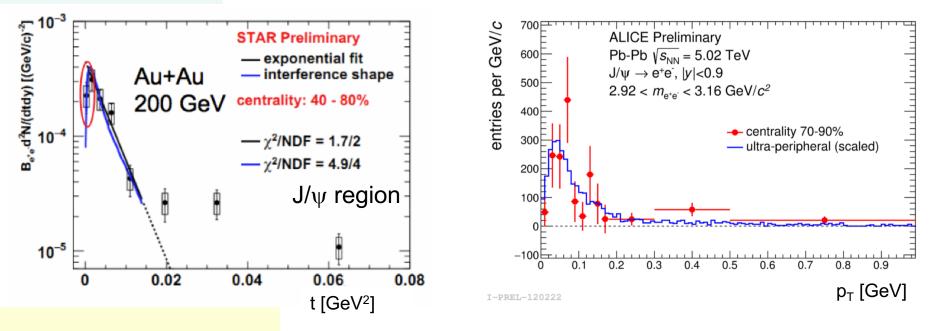


- The proton is far from smooth. It contains gluonic hot spots (or other fluctuations)
- The EIC will map this behavior in x,Q², and should apply it to nuclei

Strong saturation and the black disk limit

Higher photon energies probe lower Bjorken-x values

- Lower x values -> more gluons, more hotspots
- The fraction of the proton or ion surface covered with hot spots rises
- Eventually, the whole surface is covered. This is the 'black disk limit,' when the nucleus acts like a totally absorptive disk
- Black disks don't fluctuate, so incoherent photoproduction should disappear.
- High-mass final states require more energetic (larger x) gluons, so they will be slower to disappear
 - Extension to nuclei model dependent


J. Cepila et al., Nucl. Phys. B934, 330 (2018)

UPCs in peripheral collisions

Photon reactions do not disappear when $b < 2R_A$

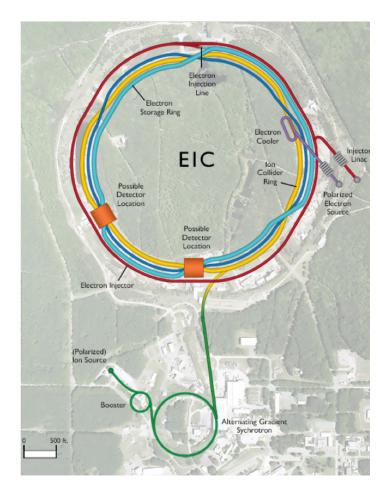
- Rates are lower due to lower photon flux inside nucleus
- Coherence is reduced/eliminated

- Hadronic interactions reduce target energy
- Data shows excess I⁺I⁻ pairs with p_T < 100 MeV/c</p>
 - Photoproduced J/ψ + continuum I⁺I⁻

Z. Zhou [ALICE]; W. Zha [STAR], QM17; S. Yang [STAR], QM17

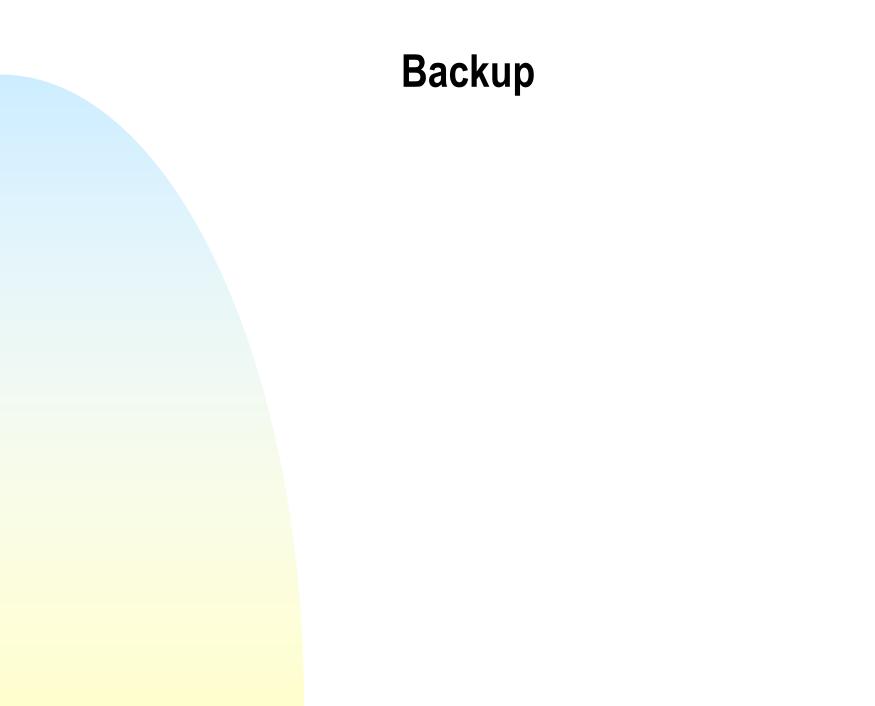
Coherent

Coherent


???

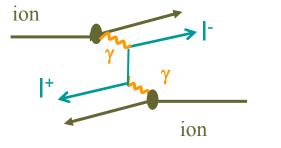
Looking ahead with UPCs

- LHC Runs 3 (starting now) and 4 will feature higher luminosity and improved detectors
 - ALICE will add a much-improved vertex detector (for open charm) and a streaming DAQ, eliminating the need for a trigger
 - Trigger is a huge bottleneck for UPCs
- A short oxygen-oxygen run is planned
 - Good species to measure incoherent photoproduction
- Precision vector meson photoproduction data
- More open dijets and charm
- J/ψ transverse distribution studies
- UPCs at a future CERN or Chinese 100 TeV hadron collider could reach down to Bjorken-x ~10⁻⁷

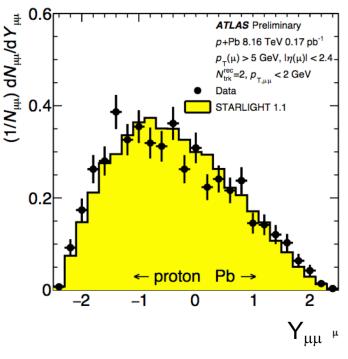

The proposed U.S. electron-ion collider

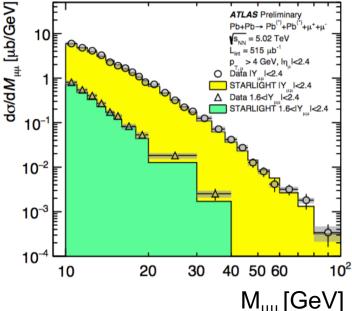
- Add an 18 GeV electron ring to the RHIC complex
- Augmented ion ring
 - 275 GeV p, 110 GeV/n ions
 - Improve polarized source
- Coherent electron cooling to reduce emittance
- Very high luminosity ~ 10 ³⁴/cm²/s
 - Precision physics
- At least one detector
 - Full acceptance, with excellent forward and backward coverage
 - Collaboration forming now
- Completion in early 2030s

Conclusions

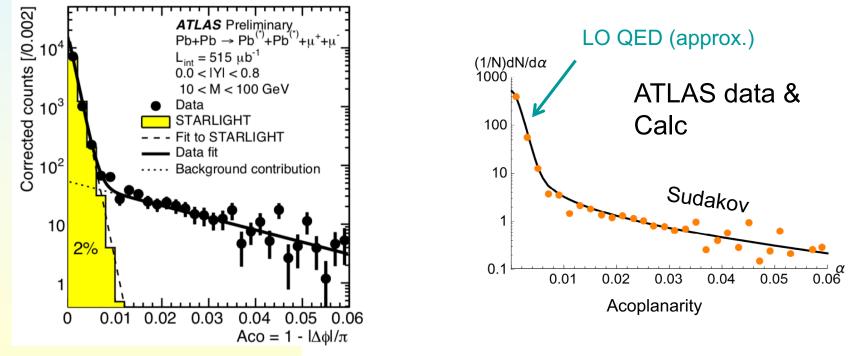

- Photoproduction is a key tool to study partons in dense nuclear environments
 - The LHC is the energy frontier, probing gluons down to Bjorken-x of 10⁻⁶
- Photoproduction of open charm and dijets are theoretically fairly clean, but messy experimentally.
- Photoproduction of quarkonium is experimentally straightforward, with results on many mesons, including the ρ , ρ ', J/ ψ , ψ ' and Y
- σ(γp->J/ψ p) is reasonably well described by a simple power law, as predicted if gluon distributions also follow a power law
- Light meson production on nuclei is well-described by the Glauber-Gribov paradigm that accounts for multiple dipole interactions.
- J/ψ photoproduction on lead shows a moderate suppression of the cross-section, consistent with the leading-twist model of shadowing, and with the favored regions of nuclear PDFs.
- Looking ahead, we expect much photoproduction data from LHC Run 3 and 4, and the future U. S. electron-ion collider.

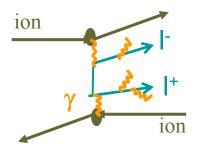
γγ-> dileptons


Well described by LO QED


- ion γ γ |+ ion
- Overlap of photon fluxes+ the Breit-Wheeler formula for $\gamma\gamma$ ->I⁺I⁻
- σ is huge 200,000 barns for PbPb at the LHC
 - Multiple pairs possible at smaller impact parameters
 - Production out to μ m impact parameters for forward production
- Strong forward/backward topology
 - Most leptons go 'down beampipe'
 - Low detection efficiency (but cross-section is large)
- Lepton pair p_T < ~ M_{II}/γ
 - Leptons are nearly back-to-back
- Studies from STAR, ATLAS, CMS, plus incidental measurements (background J/ψ-> II) from CMS, ALICE

ATLAS γγ -> μ⁺μ⁻


- Data is in excellent agreement with STARlight Monte Carlo
 - The STARlight Monte Carlo is a common benchmark
 - It uses real photons (Equiv. Photon approx.), but difference with full quantum electrodynamics calculation is very small
- Small differences at large rapidity and large pair mass
 - Possibly because STARlight does not include pair production inside nuclei



Large p_T pairs

- Low pair p_T region well described by LO QED
- A tail at large acoplanarity/p_T is not well described by LO QED
- Compatible with higher order terms per a Sudakov resumnation
 - Emission of many soft photons

ATLAS: Nucl.Phys. A967, 281 (2017); SK, A. Muller, B. W. Xiao and F. Yuan, Phys. Rev. D102, 094013 (2020)

Photon transverse momenta

- Normally, photons are plane waves
- Here, there is a transverse component. From the Poynting vector, we can write

$$\begin{split} n(\omega; \mathbf{b}) &= \frac{1}{\pi \omega} \left| \mathbf{E}_{\perp}(\mathbf{b}, \omega) \right|^2 \\ &= \frac{4Z^2 \alpha}{\omega} \left| \int \frac{d^2 k_{\perp}}{(2\pi)^2} \, \mathbf{k}_{\perp} \, \frac{F(\mathbf{k}_{\perp}^2 + \omega^2/\gamma^2)}{\mathbf{k}_{\perp}^2 + \omega^2/\gamma^2} \, e^{-\mathrm{i}\mathbf{b}\cdot\mathbf{k}_{\perp}} \right|^2 \end{split}$$

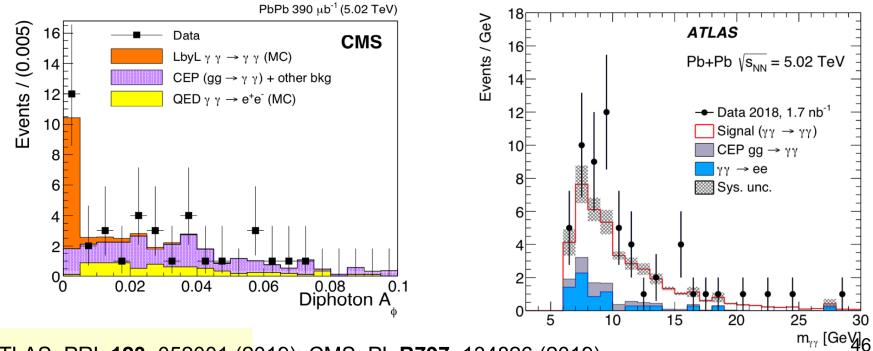
- F(q) is the emitter form factor; q is the momentum transfer
 - ♦ F(q) ~ 1 for q<hbar/R_A
 ♦ F(q) ~ 0 for q>hbar/R_A
 Photon wavelength > nucleus?
- Can extract p_T spectrum for integral over all b

$$\frac{d^2 N}{d^2 k_T} = \frac{\alpha Z^2 F(k_T^2 + k_z^2/\gamma^2) k_T^2}{\pi^2 (k_T^2 + k_z^2)^2}$$

Photon p_T is small, ~ k/γ


For $b > 2R_A$, etc., b and k_T are conjugate variables -> pain

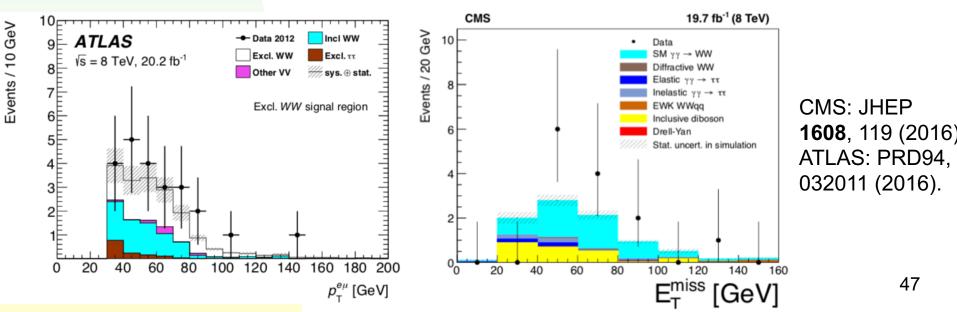
♦ no direct answer, but <p_T²> ~ 1/b²

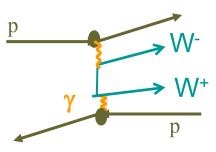

Vidovic et al., Phys. Rev. C47, 2308 (1993); Klein & Nystrand, PRL 84, 2330 (2000); Klein *et al.* (2020)

Light-by-light scattering

- Seen by ATLAS and CMS
- "Box diagram" is sensitive to new (beyondstandard-model) charged particles.

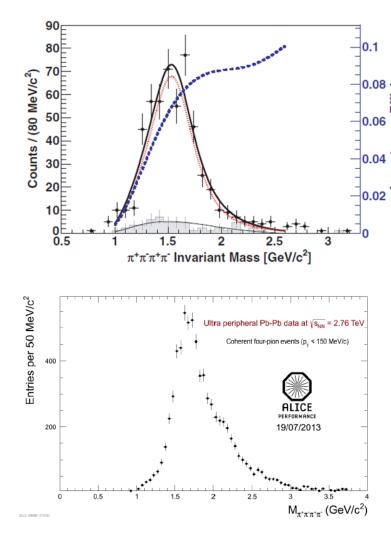
Limits on axion-like particles



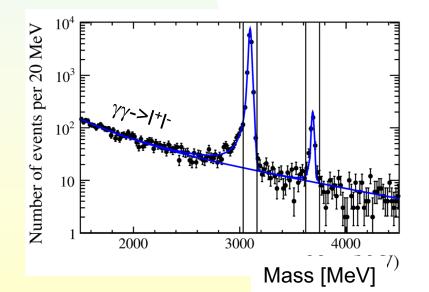

ATLAS: PRL 123, 052001 (2019); CMS: PL B797, 134826 (2019)

γγ->W⁺W⁻

- Studied by ATLAS and CMS in pp collisions
 - pp allows higher final state masses
 - Some photon emission accompanied by proton dissociation
- W->Iv -> missing energy & acoplanar leptons
 - Background rejection is tough

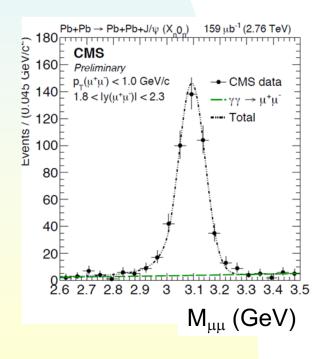

- CMS saw 13 events; 5.3 ± 0.7 signal plus 3.9 ± 0.6 background expected
- 3.4 σ evidence; compatible with Standard Model
 - Limits on non-standard quartic couplings set

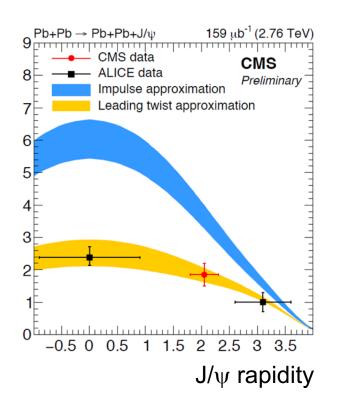
Excited ρ and $\pi\pi\pi\pi$ final states


- Seen by STAR and ALICE
- Expected to be mixture of ρ'(1450)
 & ρ' (1700)
 - These two states can interfere, and predominantly decay to ππππ
- Μ_{ππππ} ~ 1540 MeV
- Γ~670 MeV
- Significant decays to $\rho^0 \pi \pi$
- Consistent with expected mixture of ρ'(1450) & ρ' (1700)

STAR: PRC81, 044901 (2010) ALICE: C. Mayer, 2014 CERN UPC wkshp

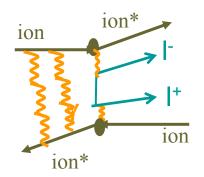
$\gamma p \rightarrow Q \overline{Q}$ in pp and pA

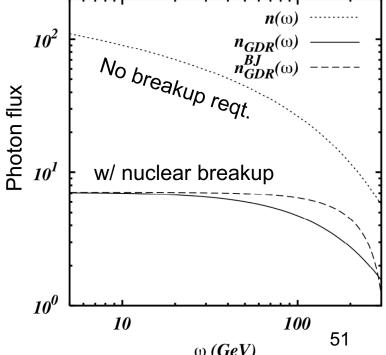

- High statistics data extends HERA $\sigma(\gamma p J/\psi)$ to higher energies
 - Access gluon distributions down to 10⁻⁶ at Q² ~ m_{quark}²
- In pp & AA there is the two-fold ambiguity: $k = M_V/2 \exp(\pm y)$
 - Ambiguity disappears at y=0 (solutions are degenerate) or large |y|, where the low-k solution dominates.
 - Estimate lower-k solution and correct
- In pA, most of the photons come from the heavy nucleus
 - P_T spectrum differences between γp & γA give further discrimination


R. McNulty [LHCb] ICHEP 2016

PbPb-> J/ ψ in CMS at $\sqrt{s_{NN}}$ = 2.76 GeV

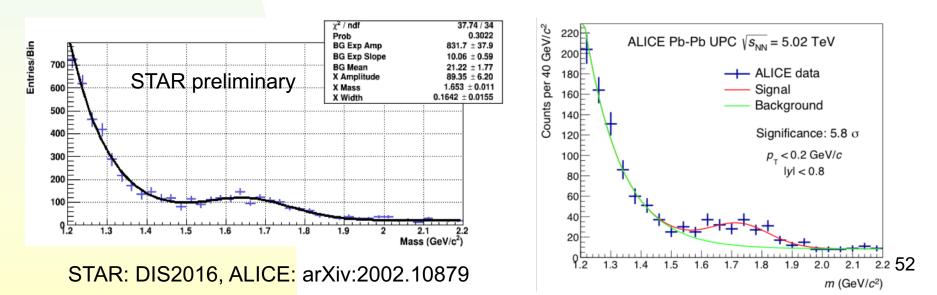
- μ⁺μ⁻ at |y| = 2.05
- Cross-section is ~ 40% of impulse approximation
 - Moderate nuclear shadowing
 - Again, consistent with leading twist calculation

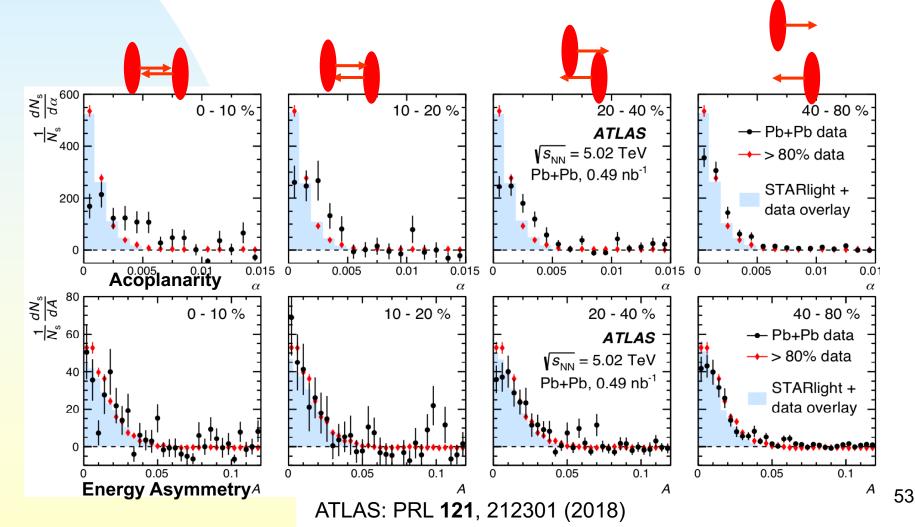

D. Tapai Takaki [CMS], QM17



Multi-photon exchange & impact-parameter 'engineering'

- Photon distributions scale as 1/b²
 - In multi-photon exchange is smaller
 - + For 2 photons, $\sigma \sim 1/b^4$, for 3 photons $1/b^6$
 - drops and <p_> rises with more photons
 - Due to kinematics '1 photon does one thing'
- Photons spectrum is harder with smaller b
 - Can tune photon spectrum
- STAR requires neutrons in their zero degree calorimeters to trigger
 - From nuclear breakup
- Can tune photon spectrum
 - Bidirectional ambiguity...
- Photon polarizations are also parallel

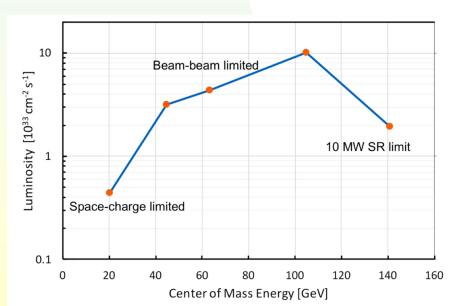

G. Baur et al., Nucl. Phys. A&29, 787 (2003)

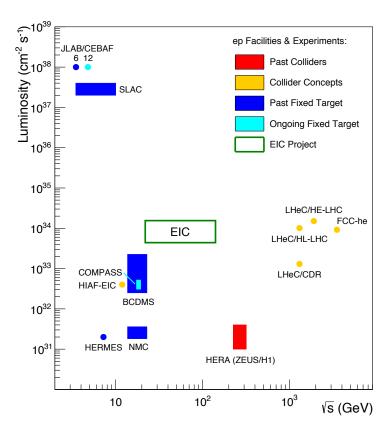

ρ' -> ππ?

- **STAR and ALICE see a heavy** $\pi\pi$ state
 - STAR: M_X = 1653 ± 10 MeV, Γ(X)=164 ± 15 MeV (stat. only)
 - ALICE: M_X = 1725 ± 17 MeV, Γ(X)=143 ± 21MeV
- Width inconsistent with ρ ' (1700) [M=1720 MeV, Γ =250 MeV]
- ρ' branching ratio to pp is small
- Mass, width and abundance may be consistent with $\rho_3(1690)$
 - consistent w/ Br($\rho_3 \rightarrow \pi^+\pi^-$) & previous $\gamma p \rightarrow \rho_3 \rightarrow \eta \pi^+\pi^-$ data
 - Spin 3 allowed through in-medium wave function modifications?

p_T spectra from UPCs to peripheral

- **ATLAS** has studied $\gamma\gamma$ -> $\mu^+\mu^-$ in hadronic collisions
- Acoplanarity (p_T) increases in more central collisions
 - Medium interactions? Magnetic field? Restricted |b| range




EIC luminosity

Luminosity 1000 times HERA

- High currents required
- ♦ I_{electron}=2.5 A

- Max. 9 (or 10) MW synchrotron radiation limits I_{electron} at high energies
 - Cost of cooling
- ♦ I_{hadron} =1.0 A
- For ion beams, luminosity/nucleon is roughly constant

Trade energy for luminosity?

Different physics topics may hav different optimal energies