

Relatório de Atividades LHCb Brasil 2021

Alvaro Gomes - Workshop RENAFAE 2022

Data: 2022/04/25

Universidade de Brasília

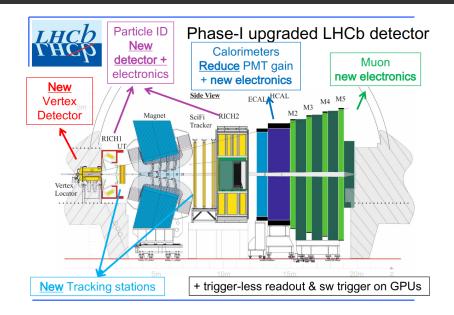
Overview

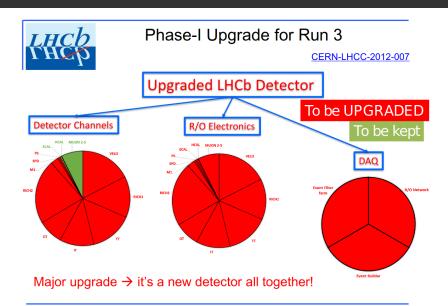
- 1. Grupos
- 2. LHCb Overview
- 3. Instrumentação
- 3.1 VeLo
- 3.2 SciFi
- 3.3 GRID
- 4. Resultados de Física
- 4.1 Física do méson D
- 4.2 Física do méson *B*
- 5. Outras Atribuições e Produções
- 6. Conclusões e Perspectivas

Grupos

CBPF

- Pesquisadores Seniors (6)
 - Ignácio Bediaga (PQ1A), Alberto Correa dos Reis (PQ1D),
 Melissa Cruz (UNAH Honduras), Alvaro Gomes (UnB PQ2), André Massafferri (PQ2) e Jussara Miranda.
- Bolsistas de pós-doutorado (1)
 - Diego Torres.
- Bolsistas pós-graduação (3)
 - Ulisses Carneiro (dout.), Lucas Falcão (dout.) e Juan Baptiste Leite (dout.).
- Técnicos do quadro do CBPF (5)
 - Diogo Ayres (bolsa PCI), Eraldo Silva Júnior, Fernando Souza, Jaime Paixão, Orlanna Lopes e Renato Santana.


PUC e UFRJ


- PUC Pesquisadores Seniors (1)
 - o Carla Göbel (PQ1C).
- PUC Bolsistas de pós-graduação (5)
 - Bianca de Barros (mest.), Ivanildo Rui Barbosa (dout.),
 Leonardo Santoro (mest.), Lucas Romão (mest.) e Victória
 Ramos de Oliveira (mest.).
- UFRJ Pesquisadores Seniors (10)
 - Bruno de Paula, Érica Polycarpo (PQ1D), Fernando Rodrigues, Irina Nasteva (PQ2), José Helder Lopes, Juan Otálora, Leandro de Paula (PQ1A), Miriam Gandelman (PQ1B), Murilo Rangel (PQ1D) e Sandra Amato (PQ1D).
- UFRJ Bolsistas de pós-graduação (4)
 - Felipe Luan Souza de Almeida (dout.), Lucas Meyer Garcia (dout.), Gabriel dos Santos Rodrigues (mest.) e Salazar Travancas Neto(mest.).

LHCb Overview

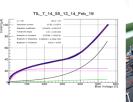
LHCb Detector for Run3

LHCb Detector for Run3

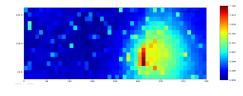
Instrumentação

Upgrade do detector VeLo

Gabriel Rodrigues, Irina Nasteva, Juan Otalora, Miriam Gandelman

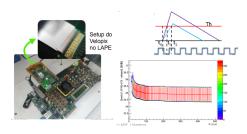

- O Colaboração com o VeLo desde 2002:
 - Desenvolvimento de sensores e eletrônica Velopix.
 - Estudos com feixe (test beam).
 - Câmara de testes de detectores na UFRJ (vácuo, resfriamento, aquisição de dados).
 - o Telescópio brasileiro COMBAT.
- Atividades atuais no Upgrade do VeLo:
 - Estudo de danos de radiação.
 - viabilidade de monitorar a fluência a partir do ruído e da corrente de fuga para diferentes temperaturas.
 - Perspectivas: novo métood de medição de temperatura sem contato na câmara de teste do LAPE.
 - o Comissionamento do VeLo upgrade:
 - o Bancada de testes no CERN.
 - o Calibração e otimização dos DACs.
 - o Estudos de resposta temporal e monitoramento.

Upgrade do detector VeLo



Gabriel Rodrigues, Irina Nasteva, Juan Otalora, Miriam Gandelman

- o Estudo de danos de radiação:
 - Sensor Velopix irradiado no CERN.
 - Viabilidade de monitorar a fluência a partir do ruído e da corrente de fuga para diferentes temperaturas de operação.
 - Validação do método de análise: limitado pela medida de temperatura.
 - Perspectiva: novo método de medição da temperatura sem contato na câmara de testes do LAPE.



Upgrade do detector VeLo

Gabriel Rodrigues, Irina Nasteva, Juan Otalora, Miriam Gandelman

- Comissionamento e Calibração:
 - Estudo da diferença temporal entre sinais de diferentes amplitudes (timewalk).
 - Afeta a identificação da colisão de origem (BXID).
 - Montagem no LAPE com Velopix e aquisição com SPIDR (FPGA).
 - Comissionamento: receita de calibração e otimização dos DACs analógicos do Velopix.

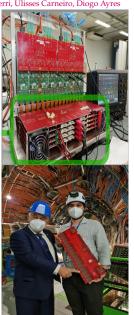
Spinoff - Ventilador pulmonar HEV e HPLV

Gabriel Rodrigues, Irina Nasteva

- High Energy physics Ventilator (HEV)
 - Ventilador de baixo custo, baixo consumo de energia e alta qualidade para uso em UTI.
 - Resultados dos protótipos são compatíveis com dispositivos comerciais.
 - https://doi.org//10.1098//rsos.211519
- ⊚ High Performance Low-cost Ventilator (HPLV)
 - Impulsiona a implementação prática do HEV, com foco em países de baixa e média renda (Brasil).
 - Financiamento UKRI GCRF/Newton Fund, chamada para COVID-19.
 - o Colaboração: STFC, UFRJ, UoL, UoB, MD-TEC e CERN.
 - o WP1 responsabilidade da UFRJ: implementação no país alvo.
 - Desenvolvimento e testes de um protótipo com peças e interfaces adaptadas ao Brasil.
 - Está no estágio final de integração da mecânica-eletrônica-software.

Novo detector de traços SciFi

André Massafferri, Ulisses Carneiro, Diogo Ayres


- Sistema de traços do Run1/Run2 apresentavamo alguns gargalos:
 - A 1 MHz o sistema de traços apresentava uma saturação no trigger no nível de hardware.
 - A alta ocupação esperada no Run3 (> 20%) afeta os algoritmos de reconhecimento padrão de traços.
- Requisitos para Scintilating Fiber tracker:
 - Eletrônica que permita leitura das informações do detector a 40 MHz.
 - Trigger do experimento para o Run3 todo feito por softwares em GPU.
 - Manter a resolução espacial ($< 100 \mu m$) e a eficiência de identificação de hit ($\sim 99\%$).
 - Resistir a altas dosagens de radiação durante os anos de operação.

Novo detector de traços SciFi

André Massafferri, Ulisses Carneiro, Diogo Ayres

- O SciFi é composto por:
 - Fibras cintilantes que quando montadas no módulo permitem a observação de 18 fotoelétrons por 6 fibras.
 - A fibras são conectadas a fotomultiplicadores de silício (SiPM): muitos desafios para resfriar a −40°C para controlar a corrente de escuro em regime de radiação.
 - SiPM são conectados a eletrônica de front-end, sendo um total de 2048 canais que precisam ser lidos a $\sim 40MHz$.
- O Participação brasileira:
 - o Grupo CBPF desenvolveu sistema de teste de todas as 320 Read-out-Boards (RoB) do SciFi.

- Worldwide LHC Computing Grid (WLCG) é a rede de computadores em GRID do CERN:
 - WLCG combina ~ 900.000 núcleos em 170 locais de 42 países.
- O CBPF faz parte da WLCG:
 - o 3 sub-clusters com um total de 1528 núcleos.
 - o 320 TB de armazenamento disponível.
 - Aproximadamente 1 milhão de jobs por ano.
 - Previsão de adicionar mais 170 TB de armazenamento e 550 novos núcleos.
 - o 4 técnicos do quadro do CBPF prestando assistência.

Sistema GRID desde 2008

Ignácio Bediaga, Renato Santana, Jaime Paixão, Orlanna Lopes

Resource Centre CBPF — Total number of jobs by VO and Resource Centre (Official VOs)

VO	CBPF	Total
alice	726,682	726,682
atlas	411	411
auger	192,834	192,834
biomed	632,642	632,642
cms	19,861	19,861
dteam	14,897	14,897
dune	4,359	4,359
enmr.eu	40,138	40,138
fusion	51,501	51,501
lheb	2,475,627	2,475,627
ops	425,129	425,129
Total	4,584,081	4,584,081

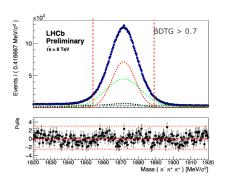
Outras contribuições notáveis

O UFRJ:

- Murilo Rangel e José Helder Lopes: Reconstrução de Jatos no experimento LHCb.
- Murilo Rangel: Reconstrução e seleção de fótons no primeiro nível do trigger.
- Murilo Rangel e Bruno de Paula: Estudos de QCD e interação fraca.
- Sandra Amato e Érica Polycarpo: Manutenção das linhas de decaimento de D⁺ em três corpos no trigger de nível 2 do experimento LHCb.

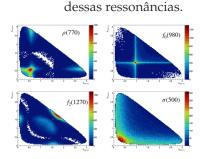
Resultados de Física

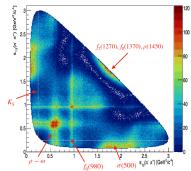
- Motivação:
 - Nenhum resultado neste decaimento desde CLEO (13 anos atrás).
 - Alta disponibilidade de dados permite explorar o espaço de fase para melhor compreensão da dinâmica desse decaimento.
 - Serve como referência para a buca por violação de CP neste decaimento nos dados do Runz.
 - Aplicação de um modelo quasi-independente onde a onda-S é descrita como função de $m(\pi\pi)$.
- Amostra: dado coletados pelo experimento LHCb durante o ano de 2012 (Run1).



Ajuste dos dados:

- Ajuste necessário para se obter o número de candidatos para definir a janela de massa da análise de amplitudes.
- 571.996 ± 817 candidatos e pureza de $(95.2 \pm 0.1)\%$.





- Sepaço de fase do decaimento:
 - Formado pelas massas invariantes de duas filhas do decaimento $(s_{12}(\pi^-\pi^+) e s_{13}(\pi^-\pi^+))$.
 - Espaço de fase simetrizado devido a presença de duas partículas idênticas (π^+).

 Faixas com excesso de eventos representam ressonâncias e seções com ausência de eventos são uma assinatura do spin

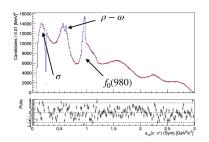
- O Análise de amplitudes:
 - Definir uma função de verossimilhança que inclua uma descrição para o sinal e para o background:

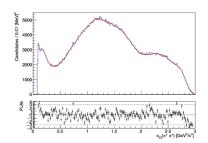
$$\mathcal{L} \propto \prod_{events} f_s PDF_{sinal} + (1 - f_s) PDF_{bkg}$$

$$PDF_{sinal} = |\mathcal{A}|^2 \cdot \epsilon(s_{12}, s_{13})$$

$$\mathcal{A}(s_{12},s_{13}) = \left[\mathcal{A}_{onda-s} + \sum_{spin1,spin2} a_i e^{i\delta_i} \mathcal{A}_i\right]$$

$$s_{12} = m^2(\pi_1^-\pi_2^+) \; e \; s_{13} = m^2(\pi_1^-\pi_3^+)$$





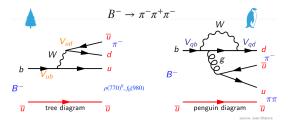
Resultados:

- Análise está em estágio final de escrutínio dentro da colaboração. LHCb-ANA-2021-029
- Trabalho fez parte da dissertação de mestrado de Fernanda Gonçalves Abrantes em 2020.

Resonance	Magnitude	Phase $[^o]$	Fit Fraction (FF) (%)
$\omega(782)$	$0.0168 \pm 0.0006 \pm 0.0015 \pm 0.0002$	$-103.3 \pm 2.1 \pm 2.62 \pm 0.4$	$0.103 \pm 0.008 \pm 0.014 \pm 0.002$
$\rho^{0}(770)$	1 [fixed]	0 [fixed]	$26.0 \pm 0.3 \pm 1.6 \pm 0.3$
$\rho^{0}(1450)$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	$5.4 \pm 0.4 \pm 1.3 \pm 0.8$
$f_2(1270)$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	$13.8 \pm 0.2 \pm 0.4 \pm 0.2$
$\rho^0(1700)$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	$5.7 \pm 0.5 \pm 1.0 \pm 1.0$
S-wave			$61.8 \pm 0.5 \pm 0.6 \pm 0.5$

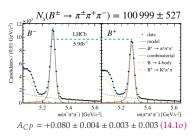
- Motivação:
 - A matriz de Cabibbo-Kobauashi-Maskaw (CKM) introduz a possibilidade de violação de CP através de uma fase fraca (parametrização de Wolfenstein):

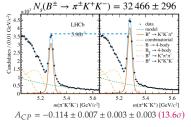
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

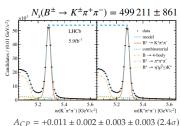

⊚ Exemplo: $B^- \to K^-K^+K^-$

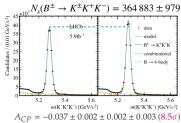
$$B^{-}_{\bar{u}} \xrightarrow{V_{ub}} V_{ub} \xrightarrow{\bar{u}} K^{-}_{u} \times \chi_{ub} \times \chi_{ub$$

Violação de CP em $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

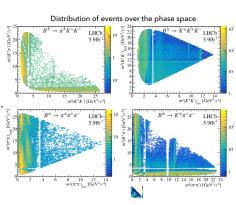

- Para se observar violação de CP é necessária a interferência entre duas amplitudes que contribuam para o mesmo estado final com fases fraca e forte diferentes.
- A fase fraca vem da matriz de CKM.
- A fase forte pode ter duas fontes:
 - o Contribuição pinguim de curto alcance no nível de quark.
 - o Interações de estado final, como por exemplo o reespalhamento hadrônico $\pi\pi \leftrightarrow KK$ na região de 1-1.5~GeV.




Violação de CP inclusiva

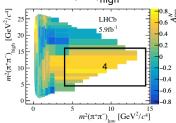


 \odot Amostra: 5.9 fb^{-1} de dados coletados pelo experimento LHCb durante o Run2.

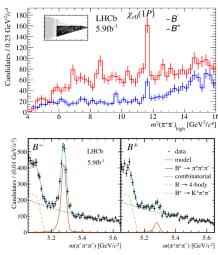


Violação de <u>CP em $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ </u>

- ⊚ Os decaimentos $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ são um rico ambiente para estudar violação de CP.
- Espaço de fase disponível muito maior que no caso dos mésons D.
- Diferentes fontes contribuem para as assimetrias:
 - interferência entre diagramas árvore e pinguim.
 - interferência entre ressonâncias.
 - Interações de estado final.


Violação de CP em regiões

$$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$$


Region 4

$$4 < m^2(\pi^+\pi^-)_{low} < 15$$

 $4 < m^2(\pi^+\pi^-)_{high} < 16$

- □ No *CPV* expected in $\chi_{c0}(1P)$ in SM
- CPV could arise from interference with a nonresonant decay amplitude

Phys. Rev. Lett. 74 (1995) 4984

$$A_{CP} = +0.745 \pm 0.027$$

Violação de CP em regiões

- ⊚ Resultados $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ LHCb-PAPER-2021-049:
 - o Primeira observação de violação de CP em $B^\pm \to K^\pm K^+ K^-$ e confirmação de violação de CP em $B^\pm \to \pi^\pm \pi^+ \pi^-$ e $B^\pm \to K^\pm \pi^+ \pi^-$.
 - Violação de CP em regiões do espaço de fase são mais intensas, com ~ 75% em $B^\pm \to \pi^\pm \pi^+ \pi^-$.
 - Maior violação de CP observada em decaimentos do méson B[±].
 - Violação de CP está localizada na região da ressonância $\chi_{c0}(1P)$ onde a expectativa é de não violação de CP de acordo com o modelo padrão.
- ⊚ Resultados $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ LHCb-PAPER-2021-050:
 - o Primeira observação de violação de CP na região do $\rho \omega$ mixing no decaimento de $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$ utilizando um método independente de modelo: $A_{CP} = 0.150 \pm 0.019$.
- Todos esse resultados apresentados por Diego Torres no tradicional CERN seminar em Março 2022.

Outras análises em andamento

- Além das análises que já estão em fase final de escrutínio, o grupo no momento trabalha ainda em outras análises:
 - CBPF/UFRJ: Análise de amplitude de $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ utilizando os dados do Run2.
 - CBPF/UnB/UFRJ: Análise de amplitudes de $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ utilizando os dados do Run2.
 - CBPF/UNAH/UFRJ: Análise de amplitudes de $B^{\pm} \rightarrow K^{\pm}\pi^{+}K^{-}$ utilizando os dados do Run2.
 - CBPF/PUC/UFRJ: Busca por violação de CP nos decaimentos $D_s^+ \to K^-K^+K^+$ e $D^+ \to K^-K^+K^+$.
 - CBPF/PUC/UFRJ: Análise de amplitudes de $D_s^+ \to \pi^- \pi^+ \pi^+$ e estudo da onda-S $\pi\pi$.
 - UFRJ: Decaimentos do méson $B_c^+ \to h^+ h^+ h^-$.

Outras Atribuições e Produções

Outras atribuições e produções científicas

- Outras atribuições do grupo:
 - Murilo Rangel membro do Speaker's Bureau até março-2021 e Érica Polycarpo membro do Speaker's Bureau a partir de abril-2021.
 - Miriam Gandelman membro do Editorial Board, responsável pela revisão de todos os papers submetidos para publicação pela colaboração.
 - Irina Nasteva membro do LHCb Early Career, Gender and Diversity office.
 - Jussara Miranda, Érica Polycarpo, Alvaro Gomes e Carla Göbel atuaram como revisores de diferentes análises dentro da colaboração.
- Plantões: Fernando Rodrigues, 26 como RTA software shifter; Carla Göbel, 14 como RTA software shifter; Alberto dos Reis, 14 como RTA software shifter.

Outras atribuições e produções científicas

- Outras atribuições do grupo:
 - Miriam Gandelman membro do comitê internacional da escola do CERN para a américa latina (CLASHEP) e membro efetivo do comitê assessor do CNPq de Física e Astronomia (CA-FA).
 - Leandro de Paula membro do CTC da RENAFAE.
 - Carla Göbel membro do IAC da CHARM 2020 (realizada em 2021).
- Ouas dissertações de mestrado finalizda em 2021.
- Dez participações em reuniões científicas nacionais e internacionais.
- Projetos de IC e extensão, entre eles a organização da Masterclass International do LHCb na UFRJ → https://www.youtube.com/lapeufrj, http://facebook.com/lapeufrj, http://instagram.com/lapeufrj.

Conclusões e Perspectivas

Conclusões e Perspectivas

- O grupo brasileiro do LHCb atua em várias frentes:
 - responsabilidade em programas chave do LHCb, como o comissionamento do VeLo e do SciFi.
 - Desenvolvimento de Software e do trigger.
 - Análise de dados.
 - GRID.
- Participação consistente na colaboração:
 - em reuniões da colaboração e em reuniões científicas representando a colaboração.
 - elaboração de documentos públicos com resultados importantes em suas áreas de interesse.
- Sormação de alunos de mestrado e doutorado com boa inserção dentro da colaboração e em instituições internacionais.

Conclusões e Perspectivas

Perspectivas

- Expansão de pessoal para todas as áreas mencionadas além da formação de alunos de mestrado e doutorado com foco no dados a serem coletado no Run3.
- © Continuar com a colaboração na parte de instrumentação já que com o início do Run3 VeLo e SciFi ainda estão em Comissionamento.
- Publicação das análises em andamento para o próximo ano.
- © Colaboração na instrumentação no Run4 ainda está em avaliação mas a participação é natural dado o histórico de colaborações nos Runs anteriores.

