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e Massive amount of information (LHC collisions
every 25 ns + ~1,3 MB per event => ~52
TB/s).

ATLAS Experiment

e Event selection => two-level online trigger

am system:

—3 o L1 (Level one)-> FPGA;
I o o HLT (High Level Trigger) ->
"""""""""""""""" ' y = o e B e TEy S0 parallel-processed software:

| ' IV R e w2 m Fast step
m Precision step
amd | e Calorimeters: energy estimation + particle
characterization:
o 4 electromagnetic layers
b et G o 3 hadronic layers
----------------------- Toroid magnets
Muon chambers  Solenold magner | Tlensiton raclafion acker e Instrument limitations can produce errors in the

Semiconductor tracker

energy estimation.
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ATLAS Experiment calorimeters

Segmentation in layers and modules: Possible error sources in energy estimation:

Tile barrel Tile extended barrel

Upstream of Lateral leakage Longitudinal
accordion leakage

LAr hadronic
end-cap (HEC)

\

LAr electromagnetic
end-cap (EMEC)

Inner detector
Cryostats +
ehapms

LAr electromagnetic
barrel
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High Level Trigger - Calorimetry

HLT is implemented on a distributed computing system.

The selection of electromagnetic particles in the trigger depends
on the response of the calorimeter.

HLT Fast Calo Step:
o Cells in each layer of the calorimeter formatted into
concentric rings;
o  An ensemble of Artificial Neural Networks makes the
acceptance or rejection decision.

Energy calibration: available only in the Precision Step and in
the offline analysis.
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e Compacting the shower information using

COncentriC enel’gy I’ingS concentric energy rings.

e Rings are built in each layer, centered around
the most energetic cell.

Tracking Electromagnetic Calorimeter Hadronic Calorimeter
A A A

r paiomnscmtiy 1 r \ I \

" e The value of the ring is the sum of the energy

EM1 ‘feMa HAD1 || HAD2 || HAD3 of its cells.

e Produce discriminating information for the
characterization of the particles.

e Because they are circular around the hottest
cell, they do not describe asymmetries present
in the energy deposition shower.

Cluster center

e Information from the asymmetries can be

TiMl
1w, PS important for calibration.
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Proposed method
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FastCalo Step calibration proposal
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Design for the FastCalo trigger an energy calibration
strategy similar to the ones available in the
PrecisionCalo trigger step and in offline analysis.

Inputs: Shower variables and Rings.

Energy regression using a Gradient Boosted Decision
Trees Ensemble (GBDTE) trained with simulated data.

Energy correction is meant to operate before the
FastCalo step, allowing an optimized trigger menu
selection.
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Proposed calibration system
Precision step GBDTE calibration:

Inputs
Netuster: cluster center position ) ) ) ) )
El,../E2,..: EMI to EM2 energy ratio This work proposes to replicate the calibration in the Fast
Eraw = El,aw + E2,00 + E3yqw: energy sum step including Rings and Asymmetric Structures:

E0aw/Elrqw: PS to EMI energy ratio
Erite1 / Eraw: HADI to EM energy ratio
An and A¢: asymmetry with respect to the most energetic cell

Outnut: gt Cluster Data - MC GBDTE
agpr = g correction factor variables Matching ‘ Calibration
+
Rings fData—MC(') asDT
Linear Matching: Data -> MC (Experimental
Data)
Estimated Calibrated
Cluster Et X @BDT = Cluster Et
b= E{RData} = aE{RMC}




Quarter Rings, Super Strips and Quarter Strips
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no, n,9,
n |
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Quarter Rings (QR) Super Strips (SS) Quarter Strips (QS)
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Quarter Rings (QR)

e Axial oriented ring division.

e Eachring (except the first one) is
divided by 4.

e This topology increase the
mapping granularity to capture
asymmetric information from
showers.

e Four quadrants arbitrarily named

n+é+, n+é-, n-¢- and n-¢+




Super Strips (SS)

e Strips equidistant to the hotcell
coordinate

e Each layer has 2*N-1 strips, where N is
the number of correspondent Standard
Rings

SuperEStrips
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Quarter Strips (QS)

Lo

e 1,9, represents the hottest cell.

o 1,0, 1,0, 7,9, n.9,: coordinate axis » and ¢.

e 1n.¢,.,7.0.,n79,,n¢ :the4 quadrants. The strips in these
quadrants can considered individually or summed altogether.

e The nand ¢ indexes are considered in relation to hotcell.

e The QS cover the same amount of energy cells as the
Standard Rings.

Quarter Strips (QS)




Results
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Matching between simulated and experimental data
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Asymmetry in Energy Flow - Super Strips

S¢,A(1,-1)=S¢'1-S¢ "
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Asymmetric
~energy flow
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SuperStrip Index (i)

Extensions of the difference distributions between
opposing strips indicates the existence of
asymmetries.

This information can be useful for calibration.
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Asymmetry in Energy Flow - Quarter Strips
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Conclusions and Perspectives
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Conclusions

The observed results indicate that the proposed calibration method is able to reduce the energy
estimation error in the fast step.

The proposed system can contribute to optimize online event selection.

The new proposed structures are able to capture asymmetries in the energy deposition profile of

particles.

Future work:

Testing new forms of mapping Experimental Data x Simulation (Smirnov Transform, Optimal
Transport)
Using data from Run 3, it will be evaluated whether asymmetry information can contribute to

improving the energy calibration process in the HLT fast step.
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Thank you !

email: paulo.farias@ufba.br
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