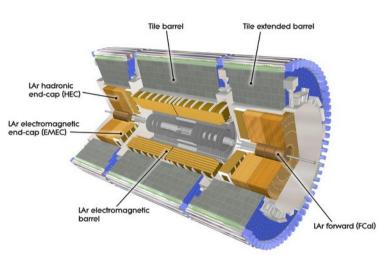
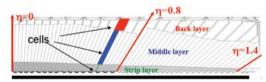

Simulação e Processamento de Sinais para Futuros Desenvolvimentos em Calorimetria de Altas Energias

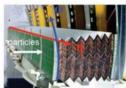
Workshop RENAFAE 2022 25 a 28 de março

M. V. Araújo^a , M. Begalli^b , W. S. Freund^a , Philipp Gaspar^a, G. I. Gonçalves^b , M. Khandoga^c , B. Laforge^c, A. Leopold^a , J. L. Marin^e , B. S-M Peralva^b , J. V. F. Pinto^a , M. S. Santos^e , J. M. Seixas^a , <u>**E. F. Simas Filho**^e</u>, E. E. P. Souza^{c,e}

> ^a LPS - COPPE/Poli – UFRJ // ^b UERJ // ^c LPNHE - Sorbonne Universitté, ^d KTH, Stockholm, Sweden // ^e LSD – PPGEE - UFBA

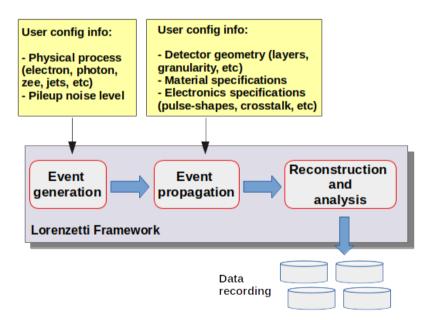

Outline

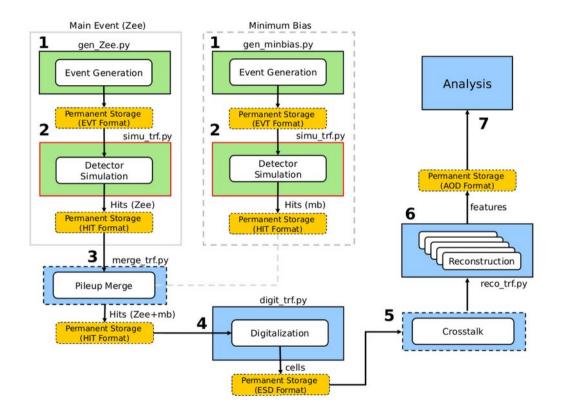

- Introduction
- Proposed Simulation Framework
 - Simulator features
 - Case-study results for a general purpose sampling calorimeter
- The Crosstalk Problem in Calorimeters
 - Crosstalk reduction using machine learning (ongoing work)
- Accessing Multi-Anode PMT with Machine Learning
- Conclusions and Perspectives


Introduction

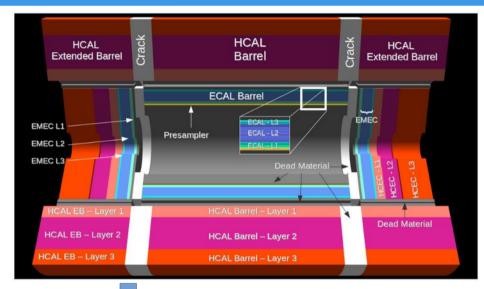
ATLAS Calorimeter

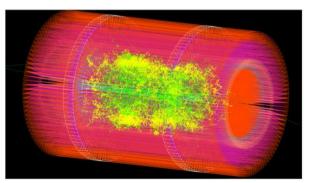
- Calorimeters play an important role in high-energy physics experiments:
 - extremely fast response;
 - essential for online trigger and offline analysis.
- Their design include:
 - electronic instrumentation;
 - signal processing chain;
 - computing infrastructure;
 - response to particle showers.
- This work presents combined efforts for simulation and signal processing in calorimeters.




Proposed Calorimeter Simulator

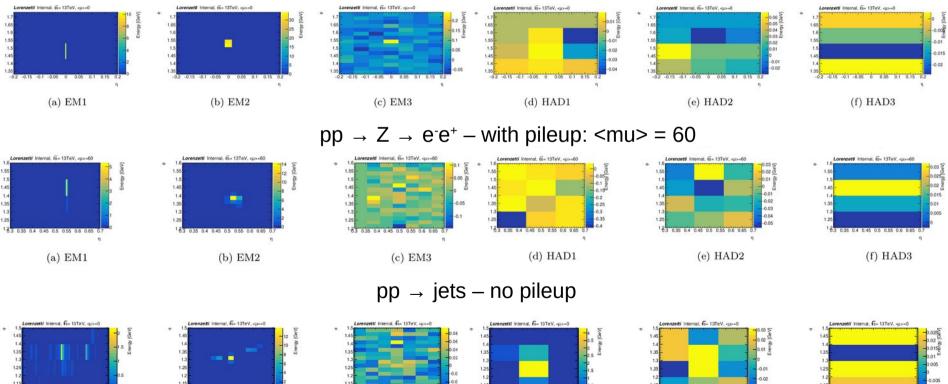
- Main framework features:
 - ready for a "non-expert" user on HEP simulation (preconfigured software structure);
 - user-configurable calorimeter structure (different designs are allowed);
 - provides low-level (cells) information for signal processing studies;
 - energy estimation module (Optimum Filter + Constrained OF are implemented);
 - crosstalk module.


Simulation chain summary


- The simulation framework is userconfigurable and provides from low-level (cells) to high-level (shower-variables) information.
- Dashed boxes (minbias generation, pileup merge and crosstalk) are optional blocks that may be turned on/off by the user.
- "Partial" simulation files are saved to allow reuse of previously produced data.
- Instructions for framework installation and running are provided.

Case-study: General-purpose sampling calorimeter simulation

Specifications

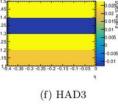


pp event propagation

Layer	Sampling	Coverage	Granularity $(\Delta \eta \times \Delta \phi)$	
D I	Barrel	$0.00 < \eta < 1.58$	0.025×0.1	
Presampler	End-Cap	$1.50 < \eta < 1.80$	0.025×0.1	
	Electromagne	tic Calorimeter		
Layer 1	Barrel	$0.00 < \eta < 1.55$	0.003×0.1	
	End-Cap	$1.37 < \eta < 1.80$	0.003×0.1	
		$1.80 < \eta < 2.00$	0.025×0.1	
		$2.00 < \eta < 2.37$	0.006×0.1	
		$2.37 < \eta < 3.20$	0.1×0.1	
Layer 2	Barrel	$0.00 < \eta < 1.50$	0.025×0.025	
	End-Cap	$1.35 < \eta < 2.50$	0.025×0.025	
		$2.50 < \eta < 3.20$	0.1×0.1	
Layer 3	Barrel	$0.00 < \eta < 1.58$	0.05×0.1	
	End-Cap	$1.35 < \eta < 2.50$	0.05×0.025	
		$2.50 < \eta < 3.20$	0.1×0.1	
	Hadronic	Calorimeter		
Layer 1	Barrel	$0.00 < \eta < 1.09$	0.1×0.1	
	Extended Barrel	$0.94 < \eta < 1.77$	0.1×0.1	
	End-Cap	$1.50 < \eta < 2.50$	0.1×0.1	
		$2.50 < \eta < 3.20$	0.2×0.2	
Layer 2	Barrel	$0.00 < \eta < 1.09$	0.1×0.1	
	Extended Barrel	$0.85 < \eta < 1.41$	0.1×0.1	
	End-Cap	$1.50 < \eta < 2.50$	0.1×0.1	
		$2.50 < \eta < 3.20$	0.2×0.2	
Layer 3	Barrel	$0.85 < \eta < 0.72$	0.2×0.1	
	Extended Barrel	$0.85 < \eta < 1.41$	0.2×0.1	
	End-Cap	$1.50 < \eta < 2.50$	0.1×0.1	
		$2.50 < \eta < 3.20$	0.2×0.2	

Results - Energy Deposition

$pp \rightarrow Z \rightarrow e^-e^+ - no pileup$



Results

Unipolar (Had)

50

Time (ns)

100

Z→ee (Signal)

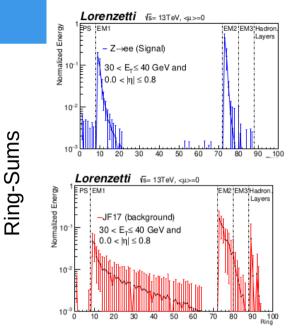
JF17 (background) -

W

CaloCells Pulse-shapes

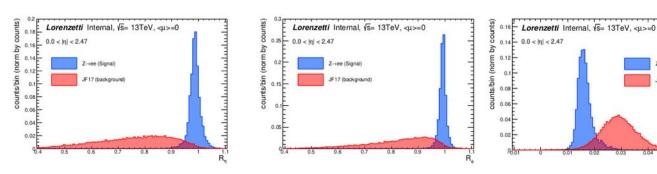
_ 0.8

\$ 0.6


0.4

0.2

300


Bipolar (LAr)

600

Shower-shapes

-50

100 200

300 400

Time (ns)

0

0.8

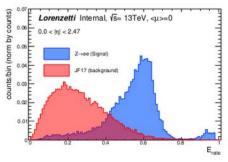
e 0.6

0.4

0.2

-0.2

Simulated Events:


 $- pp \rightarrow Z \rightarrow e^{-}e^{+}$

For validation:

- Ring sums

- Shower-shapes

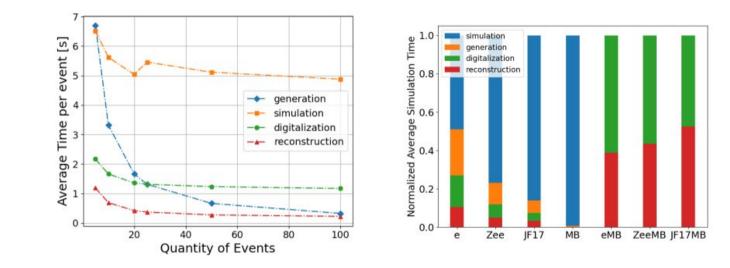
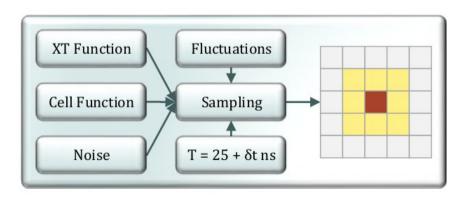
- pp \rightarrow Jets

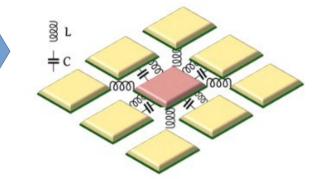
Results – Simulation time analysis

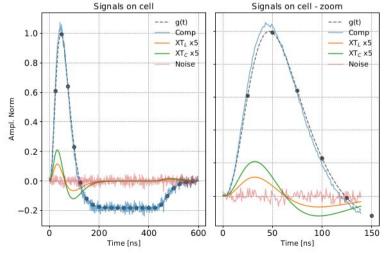
- The relative amount of time required for each computational step varies for the different main events;

- MinBias events are simulated separately from the main events, recorded, and used to produce combined (merged) simulations.

- In this way, pileup simulation time may be reduced if different main event types are used.

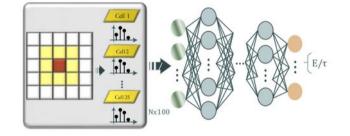



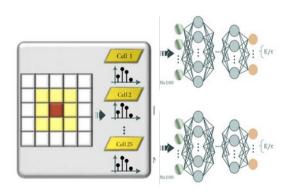

Table 3: Average production times (in seconds) for simulation of 10 events from different physics processes of interest.


Electrons	Zee	Jets	MinBias (MB)	Elect.+MB	Zee+MB	$\mathbf{Jets} + \mathbf{MB}$
101.9 ± 5.4	174.2 ± 18.0	260.8 ± 29.8	15311.0 ± 356.0	20.1 ± 0.1	21.3 ± 0.1	23.6 ± 0.1

The Crosstalk Problem in Calorimeters

- Due to the LAr calorimeter geometry and high-granularity neighboring cells may produce cross interference (crosstalk).
- For ATLAS, the main crosstalk sources are from inductive (L) and capacitive (C) natures.
- The crosstalk is not perfectly modeled in ATLAS MC and, in this study, a stand-alone simulation was developed:

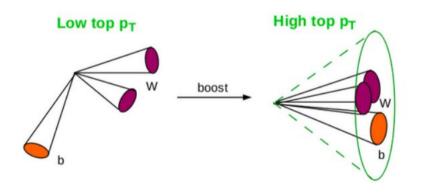



10

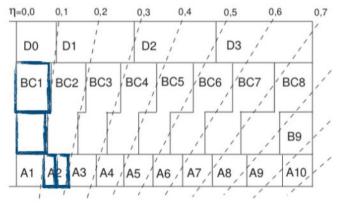
Ongoing work: Crosstalk Reduction Strategy

- Lar calo uses the Optimal Filter and crosstalk interference may affect the estimation of both, energy and time of flight.
- Machine learning methods are being used to reduce the crosstalk effects:
 - Cluster-level approach \rightarrow

- Cell-level approach \rightarrow



Perspectives:

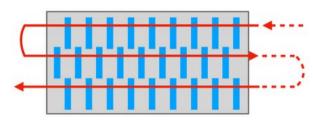

- Incorporate the crosstalk simulation module to ATLAS MC samples.
- Evaluate the proposed crosstalk reduction strategies using ATLAS MC.

Accessing Multi-Anode PMT information using Machine Learning

- Increase Tilecal granularity by using Multi Anode PMT without changing the detector mechanical structure.
- The detection of Boosted Jets in HL-LHC may benefit from such finer granularity in Tilecal
- Proposed solution: application of machine learning methods.

Tilecal segmentation

Accessing Multi-Anode PMT information using Machine Learning


- Calibration data obtained from a cesium source was used to access the typical response of the multi-anode cells.
- A convolutional neural network was used to map the single anode readout to an emulated multi-anode response.

[y pixels]

ATLAS Preliminary

Tile Calorimeter

Cesium Scan Path in A12 Cell

240 8

230

220

210

200

190

180

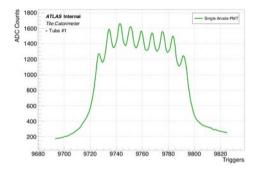
[x pixels]

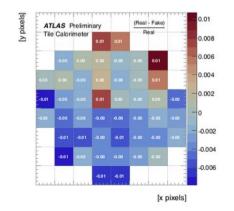
Mp

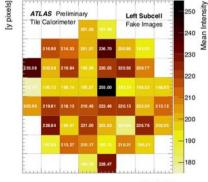
Left Subcel

Real Images

235.58


220.11


255.00


19.62 218.31 215.65 221.61 219.27

12.00 200.0

Typical calibration signal

[x pixels]

Conclusions and Perspectives

- To deal with the stringent experimental conditions expected in modern high-energy calorimeters, accurate simulation is required to develop signal processing and machine learning methods.
- This work presents a framework for detailed, accurate, and user-configurable simulation of high-energy calorimeters.
- The proposed environment produces EM and hadronic shower profiles, including adjustable pile-up levels, different pulse-shapes, energy estimation algorithms for cell readout, and signal crosstalk modeling between neighboring calorimeter cells.
- Results for a machine-learning approach for generating multi-anode calorimeter information also indicate that it is possible to increase the granularity accurately using emulated signals.