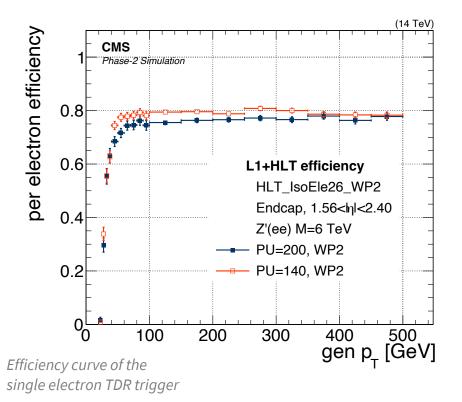


The High-Level Trigger for the CMS Phase-2 Upgrade


THIAGO R. F. P. TOMEI

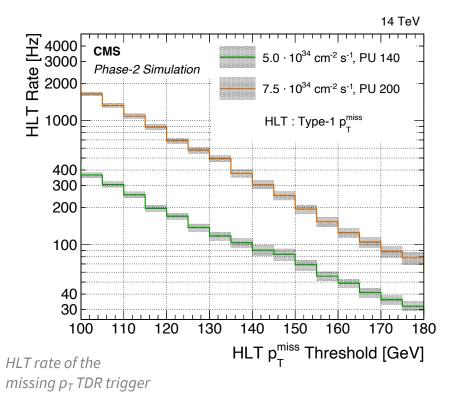
RENAFAE WORKSHOP 2022

SPRACE-Unesp

The Triple Challenge of the HLT

Efficiency

- Select the events of interest
- Generalist vs. specialized triggers


Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

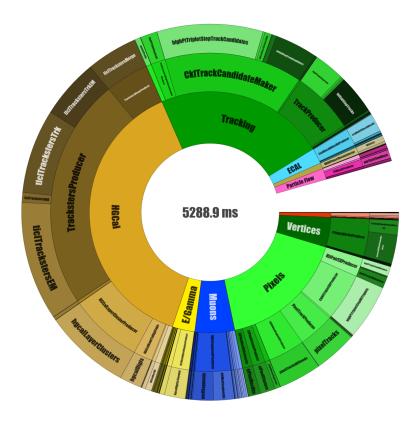
Timing

- Quasi-real time analysis
- Dependent on HLT farm size

The Triple Challenge of the HLT

Efficiency

- □ Select the events of interest
- Generalist vs. specialized triggers


Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

Timing

- Quasi-real time analysis
- Dependent on HLT farm size

The Triple Challenge of the HLT

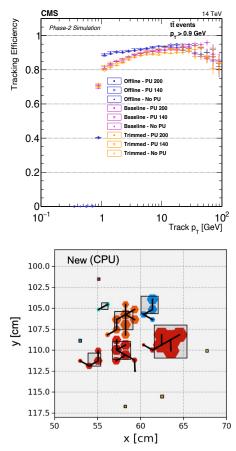
Efficiency

- Select the events of interest
- Generalist vs. specialized triggers

Rate

- Discard uninteresting events
- Output rate / bandwidth envelope

Timing


- Quasi-real time analysis
- Dependent on HLT farm size

HL-LHC DAQ-HLT Parameters

	LHC	HL-	LHC
CMS detector	Phase-1	Pha	se-2
Peak $\langle PU \rangle$	60	140	200
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz
Event Size at HLT input	2.0 MB ^a	6.1 MB	8.4 MB
Event Network throughput	1.6 Tb/s	24 Tb/s	51 Tb/s
Event Network buffer (60s)	12 TB	182 TB	379 TB
HLT accept rate	1 kHz	5 kHz	7.5 kHz
HLT computing power ^b	0.7 MHS06	17 MHS06	37 MHS06
Event Size at HLT output ^c	1.4 MB	4.3 MB	5.9 MB
Storage throughput ^d	2 GB/s	24 GB/s	51 GB/s
Storage throughput (Heavy-Ion)	12 GB/s	51 GB/s	51 GB/s
Storage capacity needed (1 day ^e)	0.2 PB	1.6 PB	3.3 PB

HL-LHC DAQ-HLT Parameters

	LHC	HL-J	LHC
CMS detector	Phase-1	Pha	se-2
Peak $\langle PU \rangle$	60	140	200
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz
Event Size at HLT input	2.0 MB ^a	6.1 MB	8.4 MB
Event Network throughput	1.6 Tb/s	24 Tb/s	51 Tb/s
Event Network buffer (60s)	12 TB	182 TB	379 TB
HLT accept rate	1 kHz	5 kHz	7.5 kHz
HLT computing power ^b	0.7 MHS06	17 MHS06	37 MHS06
Event Size at HLT output ^c	1.4 MB	4.3 MB	5.9 MB
Storage throughput ^d	2 GB/s	24 GB/s	51 GB/s
Storage throughput (Heavy-Ion)	12 GB/s	51 GB/s	51 GB/s
Storage capacity needed (1 day ^{e})	0.2 PB	1.6 PB	3.3 PB

Tracking, HGCAL

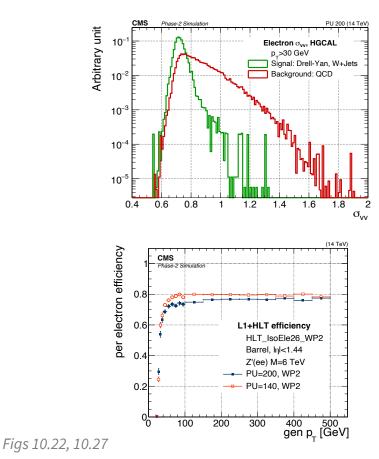
- □ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- □ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds

Muons

Seeded from L1TkMuon objects


Jets, missing p_T

Extensive pileup mitigations

Tau leptons, b-tagged jets

Machine learning techniques for ID

Figs 10.2, 12.10

Tracking, HGCAL

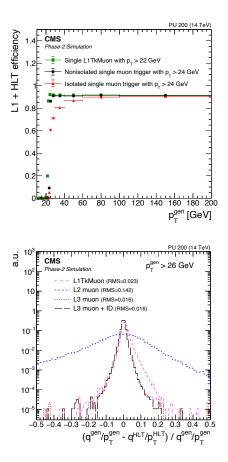
- □ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- □ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds

Muons

Seeded from L1TkMuon objects


Jets, missing p_T

Extensive pileup mitigations

Tau leptons, b-tagged jets

Machine learning techniques for ID

8

Tracking, HGCAL

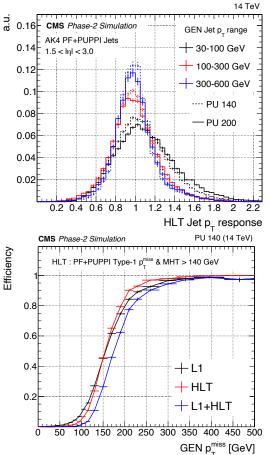
- □ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- □ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds

Muons

Seeded from L1TkMuon objects


Jets, missing p_T

Extensive pileup mitigations

Tau leptons, b-tagged jets

Machine learning techniques for ID

Figs 10.47, 10.44

Tracking, HGCAL

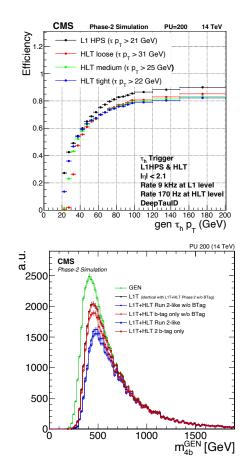
- □ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- □ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds

Muons

Seeded from L1TkMuon objects


Jets, missing p_T

Extensive pileup mitigations

Tau leptons, b-tagged jets

Machine learning techniques for ID

Figs 10.76, 10.82

Tracking, HGCAL

- □ Iterative, high-granularity detectors
- Tuned for online constraints

Electrons and photons

- □ (ECAL / HGCAL)-seeded objects
- Extensive ID to reduce backgrounds

Muons

Seeded from L1TkMuon objects

Jets, missing p_T

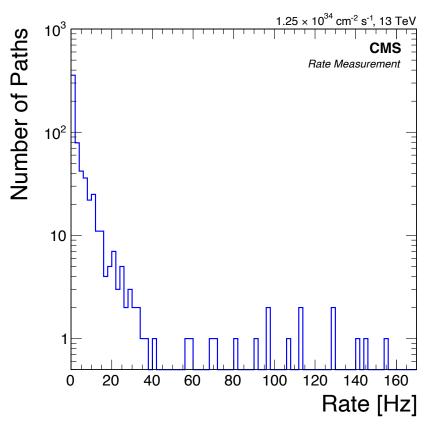
Extensive pileup mitigations

Tau leptons, b-tagged jets

Machine learning techniques for ID

Figs 10.72, 10.87

The Phase-2 Simplified Menu


2018 full menu

- □ ~600 paths, most low rate
- \Box Few heavy hitters: single e, μ

Target 50% of the Phase-2 rate
~15 single-object based paths
Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- □ Same distribution structure
- □ Correction factor: +50%

The Phase-2 Simplified Menu

2018 full menu

~600 paths, most low rate
 Few heavy hitters: single e, μ

Target 50% of the Phase-2 rate

- □ ~15 single-object based paths
- □ Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- □ Same distribution structure
- □ Correction factor: +50%

Phase-1 path	2018 threshold [GeV]	% of 2018 HLT rate
Single muon	50	3%
Single muon (isolated)	24	14%
Double muons	37, 27	1%
Double muons (isolated)	17,8	2%
Single electron (isolated)	28	13%
Double electrons	25, 25	1%
Single photon	200	1%
Single photon (isolated)	110, EB only	1%
Double photons	30, 18	2%
Single tau	180	1%
Double taus	35, 35	3%
Single jet	500	1%
Single jet w/substructure	400	2%
Multijets with b-tagging	jets = 75, 60, 45, 40	
,	$H_{\rm T} = 330$	1%
Total transverse momentum	1 050	1%
Missing transverse momentum	120	3%
total		50%

The Phase-2 Simplified Menu

2018 full menu

- ~600 paths, most low rate
 Few heavy hitters: single e, μ
- Target 50% of the Phase-2 rate
 ~15 single-object based paths
 Same structure of Phase-1 menu

Extrapolation from simplified to full menu

- Same distribution structure
- □ Correction factor: +50%

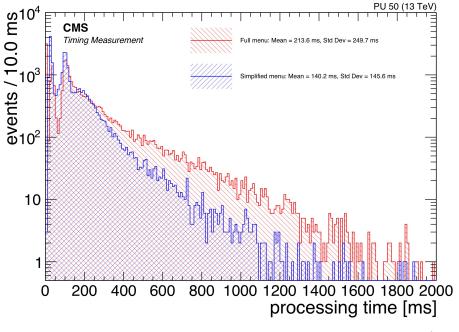


Fig 11.3

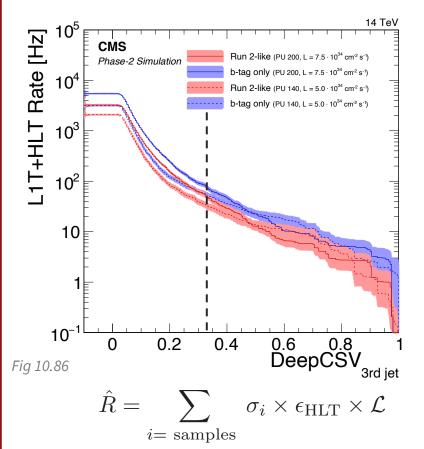
Simplified Menu: Rates

Process	Cross section $[\mu b]$
QCD multijets in \hat{p}_{T} bins	
15–20	$9.233 imes 10^2$
20–30	$4.360 imes 10^2$
30–50	$1.184 imes10^2$
50-80	$1.765 imes10^1$
80–120	$2.671 imes10^{0}$
120–170	$4.697 imes10^{-1}$
170–300	$1.217 imes10^{-1}$
300-470	$8.251 imes10^{-3}$
470-600	$6.864 imes10^{-4}$
600–∞	$2.448 imes10^{-4}$
W + jets	$5.699 imes10^4$
Drell–Yan, 10 GeV $< m_{\ell\ell} < 50$ GeV	$1.688 imes10^{-2}$
Drell–Yan, 50 GeV $< m_{\ell\ell}$	$5.795 imes 10^{-3}$

Tab 10.1

Simulated MC samples

- □ Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- U, Drell-Yan samples


Rate calculation

- Efficiency over each sample
- Individual for each path

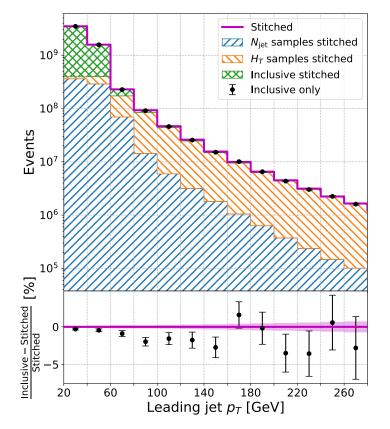
Stitching

Correct "pileup events harder than main interaction"

Simplified Menu: Rates

Simulated MC samples

- Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- W, Drell-Yan samples


Rate calculation

- □ Efficiency over each sample
- $\ \ \, \square \quad Function of p_T or ID threshold$
- Individual for each path

Stitching

Correct "pileup events harder than main interaction"

Simplified Menu: Rates

Simulated MC samples

- Minimum-bias (MB) sample: SoftQCD Pythia
 - Used for pileup events
 - Stand-in for lowest pthat QCD bin
- Multijet QCD
 - Disjoint pthat bins
 - Regular + lepton-enriched varieties
- W, Drell-Yan samples

Rate calculation

- **General Efficiency over each sample**
- Function of p_T or ID threshold
- Individual for each path

Stitching

Correct "pileup events harder than main interaction"

¹⁷ K. Ehataht, C. Veelken, https://arxiv.org/abs/2106.04360

Electron, muon, photon

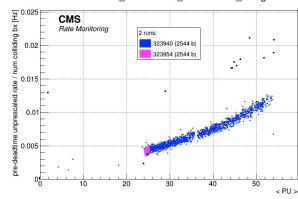
□ Very close to Phase-1

Trigger type	Phase-	1		Phase-	2	
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle \mathrm{PU} angle = 140 \ \mathrm{[Hz]}$	$\langle \mathrm{PU} angle = 200 \mathrm{[Hz]}$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37,27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple µ	5, 3, 3	0.5%	TkMu_5_3_3 StaEG_51 OR	10, 5, 5	39 ± 8	48 ± 8
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
0 ()			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR StaEG_37_24	25, 25	46 ± 4	82 ± 6
Double e (isol.)	23, 12	1%	TkEle_25_12 OR StaEG_37_24 OR TkIsoEle_22_StaEG_12	23, 12	52 ± 5	104 ± 9
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR TkIsoPho_36	108, EB only	35 ± 9	52 ± 7
Double γ	30, 18	2%	StaEG_37_24 OR TkIsoPho_22_12	30, 23	123 ± 12	179 ± 14
Double τ	35,35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{+}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
HT	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60, 45, 40		40_40_PuppiHT_328	jets = 75, 60, 45, 40		
Total rate		49 %			2525 ± 57	3621 ± 62

Electron, muon, photon

Very close to Phase-1

Hadronic paths


❑ Jet, H_T, missing p_T: only small increases

Trigger type	Phase-	1	Phase-2			
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle \mathrm{PU} angle = 140 \ \mathrm{[Hz]}$	$\langle \mathrm{PU} angle = 200 \ \mathrm{[Hz]}$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37,27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple <i>u</i>	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
1 /	, ,		StaEG_51 OR	, ,		
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
0 ()			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25,25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6
	,		StaEG_37_24	,		
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
(,	,		StaEG_37_24 OR	,		
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
0 (()	,		TkIsoPho_36			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
,			TkIsoPho_22_12			
Double τ	35,35	3%	HPSPFTau_21_21	22, 22	$106 \pm 18^{+}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
$H_{\rm T}$	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
	45, 40			45, 40		
Total rate		49 %			2525 ± 57	3621 ± 62

Electron, muon, photon

Very close to Phase-1

- ❑ Jet, H_T, missing p_T: only small increases
 - Tamed (PU)² growth
 HLT PFMET140 PFMHT140 IDTight

Trigger type	Phase-	1		Phase-	2	
	Threshold [GeV]	% rate	L1 seed	Threshold [GeV]	Rate at $\langle PU \rangle = 140 [Hz]$	Rate at $\langle PU \rangle = 200$ [Hz
Single µ	50	3%	TkMu_22	50	155 ± 6	213 + 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37,27	27 ± 1	$40\pm$
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	113 ± 11 39 ± 8	48 ± 3
inpic µ	0,0,0	0.070	StaEG_51 OR	10, 0, 0	07±0	10 1 0
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 3
Double e	25,25	1%	TkEle_25_12 OR	25, 25	46 ± 4	$82\pm$
	,		StaEG_37_24	,		
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	$104 \pm$
()	,		StaEG_37_24 OR	,		
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 0
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 1
0, ()	. ,		TkIsoPho_36	. ,		
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
,	,		TkIsoPho_22_12	,		
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\mathrm{t}}$	159 ± 22
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
HT	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 2
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	$48\pm$
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
	45, 40			45, 40		
Total rate		49 %			2525 ± 57	3 621 ± 62

Electron, muon, photon

Very close to Phase-1

- Jet, H_T, missing p_T:
 only small increases
- Multijet with b-tagging: same as Phase-1

Trigger type	Phase-	1		Phase-2			
	Threshold	Threshold		Threshold	Rate at	Rate at	
	[GeV]	% rate	L1 seed	[GeV]	$\langle \mathrm{PU} angle = 140 \ \mathrm{[Hz]}$	$\langle \mathrm{PU} angle = 200 \mathrm{[Hz]}$	
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8	
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29	
Double μ	37,27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1	
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13	
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8	
1 /			StaEG_51 OR				
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33	
0			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33	
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6	
			StaEG_37_24				
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9	
· · · ·			StaEG_37_24 OR				
			TkIsoEle_22_StaEG_12				
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6	
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7	
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			TkIsoPho_36				
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14	
			TkIsoPho_22_12				
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27	
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1	
HT	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1	
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20	
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5	
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,			
	45, 40			45, 40			
Total rate		49 %			2525 ± 57	3621 ± 62	

Electron, muon, photon

Very close to Phase-1

- Jet, H_T, missing p_T:
 only small increases
- Multijet with b-tagging: same as Phase-1
- Double tau:
 smaller p_T thresholds
 - Follow decrease from PFlow at Level-1

Trigger type	Phase-	1	Phase-2			
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle PU angle = 140 \ [Hz]$	$\langle \mathrm{PU} angle = 200 \ \mathrm{[Hz]}$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37,27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
1 /			StaEG_51 OR			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
0			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6
			StaEG_37_24			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
			StaEG_37_24 OR			
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			TkIsoPho_36			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
,			TkIsoPho_22_12			
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\dagger}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
H _T	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
00 0	45, 40			45, 40		
Total rate		49 %			2525 ± 57	3621 ± 62

Electron, muon, photon

Very close to Phase-1

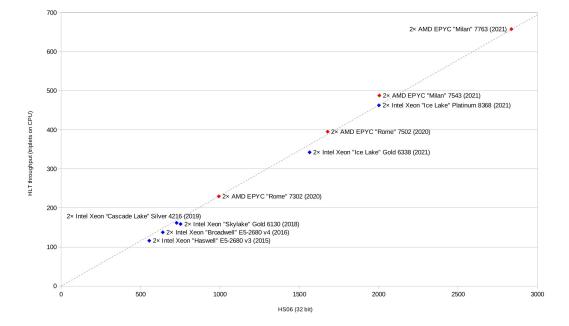
- Jet, H_T, missing p_T:
 only small increases
- Multijet with b-tagging: same as Phase-1
- Double tau:
 smaller p_T thresholds
 - Follow decrease from PFlow at Level-1

Trigger type	Phase-	1	Phase-2			
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle \mathrm{PU} angle = 140 \ \mathrm{[Hz]}$	$\langle \mathrm{PU} angle = 200 \mathrm{[Hz]}$
Single µ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple <i>µ</i>	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
1 ,			StaEG_51 OR			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
0			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6
			StaEG_37_24			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
~ /			StaEG_37_24 OR			
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
0			TkIsoPho_36			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
			TkIsoPho_22_12			
Double $ au$	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\mathrm{t}}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
HT	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing $p_{\rm T}$	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
00 0	45, 40			45, 40		
Total rate		49 %			2525 ± 57	3621 ± 62

24

Simplified Menu: Timing

Reference hardware


- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- □ 1679 +- 2 HS06 computing power
- □ HLT processing power
 - \sim follows HS06 number

Modus operandi

- Integrated HLT menu
 - Exception: tau reconstruction
- 32 independent HLT jobs
- 4 threads per job

Samples

- L1-skimmed MB
 - Realistic approximation of HLT input
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

Simplified Menu: Timing

Reference hardware

- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- □ 1679 +- 2 HS06 computing power
- □ HLT processing power
 - \sim follows HS06 number

Modus operandi

- Integrated HLT menu
 - Exception: tau reconstruction
- □ 32 independent HLT jobs
- 4 threads per job

Samples

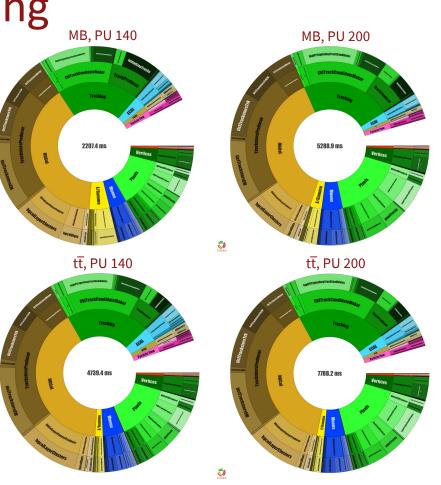
- L1-skimmed MB
 - Realistic approximation of HLT
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

Simplified Menu: Timing

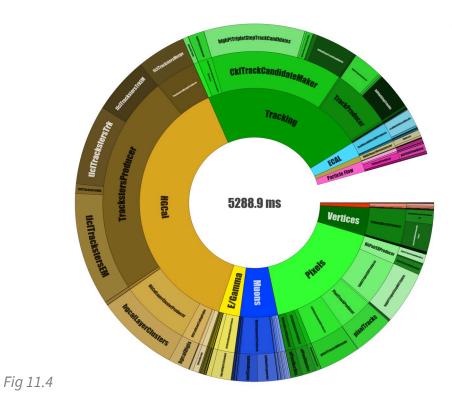
Reference hardware

- 2x AMD EPYC 7502 processors, 64 (128) physical (logical) cores
- □ 1679 +- 2 HS06 computing power
- □ HLT processing power
 - \sim follows HS06 number

Modus operandi


- □ Integrated HLT menu
 - Exception: tau reconstruction
 - 32 independent HLT jobs
- □ 4 threads per job

Samples


- L1-skimmed MB
 - Realistic approximation of HLT input
- Inclusive ttbar production
 - Hypothetical case: almost all events accepted

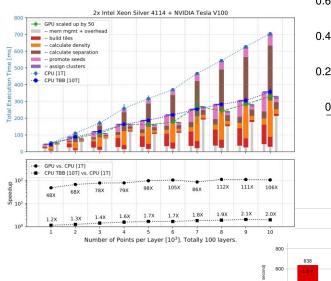
0

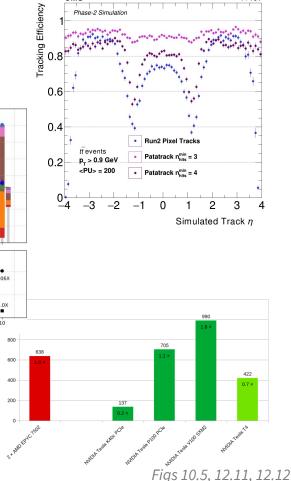
Ø

Simplified Menu: Timing

Element	Time	Fraction
B tagging	0.4 ms	0.0 %
E/Gamma	158.4 ms	3.0 %
ECAL	110.9 ms	2.1 %
Framework	0.0 ms	0.0 %
HCAL	41.6 ms	0.8 %
HGCal	2030.5 ms	38.4 %
HLT	0.7 ms	0.0 %
I/O	0.4 ms	0.0 %
Jets/MET	32.1 ms	0.6 %
L1T	2.5 ms	0.0 %
Muons	280.9 ms	5.3 %
other	232.8 ms	4.4 %
Particle Flow	78.9 ms	1.5 %
Pixels	902.3 ms	17.1 %
Tracking	1204.5 ms	22.8 %
Vertices	211.9 ms	4.0 %
total	5288.9 ms	100.0 %

Reduced from offline reconstruction O(100) s/ev


Heterogeneous Computing


Ubiquitous solution for CMS computing needs by 2027

Heterogeneous HLT farm already starting from Run-3.

Phase-2 heterogeneous HLT

 Under development: HGCAL local reconstruction, Patatrack pixel reconstruction.

14 Te\

CMS

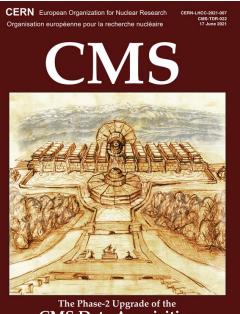
Effective farm cost

- 0.70 CHF/HS06 in 2028 50% code ported
- 0.22 CHF/HS06 in 2032 80% code ported

Conclusions

Reconstruction advanced enough to build a simplified menu for the TDR.

- □ Fully realistic (no simulation shortcuts) and integrated in CMSSW.
- Basic single-object paths with performance very close to Phase-1.
- Solid foundation to evolve into real menu to be deployed in Phase-2.


Rates and timing under control.

- Simplified menu keeps to 50% of the target Phase-2 rate.
- **Large** p_T threshold increases are not needed.
- □ Timing structure of the menu understood.
 - In order to meet the overall constraints for the HLT farm, we need to improve the overall timing by a small factor (1.5-2x).

Heterogeneous HLT under development.

Initial deployment already in Run3.

Thanks!

The Phase-2 Upgrade of the CMS Data Acquisition and High Level Trigger Technical Design Report

Please read our TDR: <u>https://cds.cern.ch/record/2759072/</u>