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ATLAS calorimeter system

@ The ATLAS calorimeter system at LHC:
- It comprises two systems: the Liquid Argon and Tile calorimeters.
- It is divided into three sections: two extended barrels and one central
barrel.
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The ATLAS calorimeter system

@ In the Tile calorimeter (TileCal), the particle energy is absorbed
(steel) and sampled by scintillating tiles.

Photomultiplier

Wave-length shifting fiber

ooooo

B. Peralva et al. Workshop Renafae 2022 27th April 2022



The ATLAS calorimeter system

@ The produced detector signal (from a PMT cell) is conditioned in
such a way that the amplitude is proportional to the energy.

e Energy is reconstructed by estimating the parameters (amplitude,
phase, pedestal) of the digitized pulse within a readout window.
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The energy estimation problem

@ Currently, the response signals are acquired within a given readout
window (around 150 ns).

@ The parameters are estimated from the received time samples through
an optimal filtering technique.
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TileCal Energy reconstruction for HL-LHC

@ Linear methods were extensively tested and are currently employed.

@ Considering the signal conditions at HL-LHC, advanced algorithms
can be evaluated, profiting from new electronics that will be employed
(pipelined times samples triggered by L0)

@ Wiener Filtering, as well as Neural Networks and Deep Learning
strategies are particularly interesting.
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Energy Estimation per bunch crossing

@ Free-running estimation are usually implemented using FIR filters;
o Lasted M samples are stored in shift registers;

o Filter taps are linearly combined (w coeficients) in order to estimate
the amplitude of the central signal (peak at M/2).
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Energy Estimation per bunch crossing

o Least Mean Squares (LMS) filtering algorithm is proposed to
adjust the weigths of the FIR filter;
- Minimizes the squared error between the estimated energy value &
generated by the filter and the target a value, given the observed
input matrix Y. The weights of the FIR filter are defined by equation:

w=(YTY) lyTa (1)

Note: The LMS solution converges to the Wiener solution.
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Energy Estimation per buch crossing

@ Preliminary test: An occupancy of 30% is considered, and the
energy amplitude is defined by a uniform distribution for training and
exponential distribution (average 30) for test.

o Filter Order Definition based on the estimation error RMS value.
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Energy Estimation per bunch crossing

o Preliminary test:
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Energy reconstruction assisted by ANN

o Atrtificial Neural Networks (ANN) and deep learning strategies can be
tested to cope with the signal pile-up harsh conditions.

@ Here, considering that a linear approach provides a reasonable
solution for the problem, we look into a simple Multi-layer Perceptron
(MLP) as a nonlinear corrector that assists the OF2 estimates

@ The ANN does not estimate the energy, but it provides a fine tuning
to the linear estimate.

@ The linear estimate is preserved and the nonlinear correction is
applied upon user decision.
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ANN training strategy

@ For training the ANN, a simulation data set is needed, where the
reference signal amplitude value is used.

@ The ANN is trained in such a way that it compensates for the
nonlinear component due to the noise (pile-up+electronic).

@ Therefore, the target is the difference between the linear estimate and
the reference value.
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ANN design

@ The signal time samples are fed into the ANN structure.

@ Two hidden layers are selected based on the energy estimation
efficiency.

@ A relu function was chosen for the activation function of the hidden
layers while a linear function is used for the output neuron.
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Application to TileCal signals

@ The combined strategy has been applied to TileCal signals.

@ Estimation error used as a performance metric.
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Application to TileCal signals

e Additionally, the Kullback-Leibler (KL) divergence was tested as a
measure of how well the estimated and expected distributions agree.

@ It's a non-symmetric measure of the difference between two
probability distributions.

Model KL for modules at dataset 'exp90".
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Conclusions

@ The HL-LHC will introduce new challenges to the energy estimation
task.

@ Online and offline opeartion may profit from different strategies.

@ The use of neural networks and alternative linear approaches are
being considered.

@ The combined method is currently being incorporated within the
TileCal reconstruction software for offline use.

@ Tests considering severe pile-up conditions expected for HL-LHC are
being carried out.

@ Deep neural network structures will be evaluated.
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