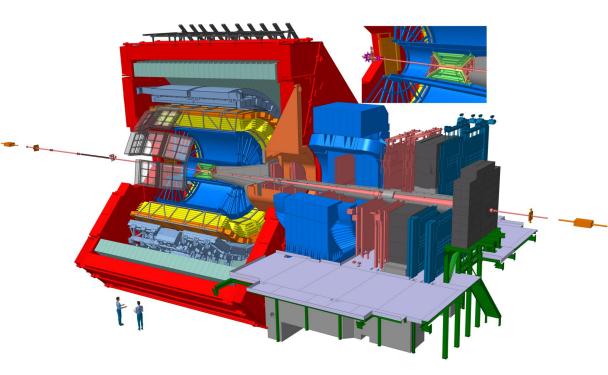
The ALICE experiment at the LHC

Cristiane Jahnke for the ALICE Brazil group

Outline

ALICE


- Collisions systems
- Brazil in ALICE
- Highlights of scientific results/
 - Jet quenching and heavy flavour
 - Anisotropic flow /
 - Quarkonia
 - Cross section/
 - Multiplicity dependence
 - Ultra-peripheral collisions
 - Machine learning
 - pile-up rejection
 - strangeness reconstruction

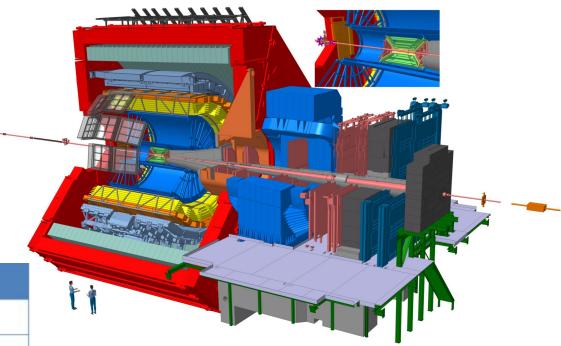
ALICE future perspectives

- Run 3 upgrades
- Run 4 upgrades
 - ALICE 3

ALICE

- Optimized to study collisions of nuclei at ultra-relativistic energies
 - 40 countries
 - 170 institutes
 - o 1972 members
- The study of matter under extreme conditions:
 - Quark-gluon plasma (QGP) characterization
 - Emergent QCD phenomena

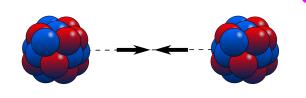
Int. J. Mod. Phys. A 29 (2014) 1430044 JINST3 S08002


ALICE

Optimized to study collisions of nuclei at ultra-relativistic energies

Midrapidity ($|\eta| < 0.9$):

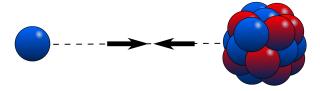
Electromagnetic Calorimeter Time of Flight Transition radiation detector Time Projection Chamber Inner Tracking System


System	Year(s)	√s _{nn} (TeV)	L _{int}
Pb-Pb	2010, 2011	2.76	75 µb-1
	2015, 2018	5.02	800 µb-1
Xe-Xe	2017	5.44	0.3 µb-1
p-Pb	2013	5.02	15 nb-1
	2016	5.02, 8.16	3 nb-1, 25 nb-1
рр	2009-2013	0.9, 2.76,	200 µb ⁻¹ , 100 nb ⁻¹
		7.8	1.5 pb ⁻¹ , 2.5 pb ⁻¹
	2015, 2017	5.02	1.3 pb ⁻¹
	2015-2018	13	36 pb-1

Forward rapidity (-4 < η < -2.5) Muon tracking and trigger

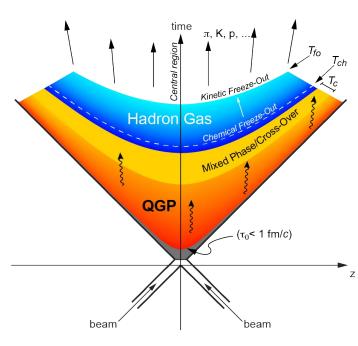
Int. J. Mod. Phys. A 29 (2014) 1430044 JINST3 S08002

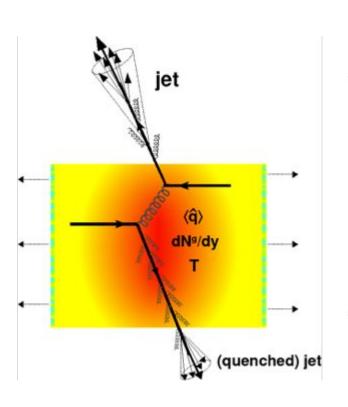
Collision systems

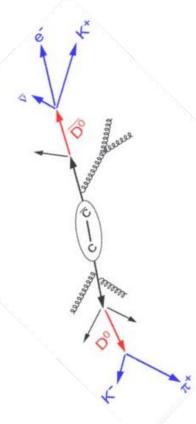


Pb–Pb / Xe–Xe collisions:

- QGP formation and its properties
 - Equation-of-state, transport coefficients...
- In-medium energy loss
 - Colour-charge and quark-mass dependence / Thermalisation
 - Quarkonium dissociation and/or regeneration
- Ultra-peripheral collisions


- p–Pb collisions:
 - Cold nuclear matter effects can be studied:
 - Nuclear modification of parton densities
 - Propagation in nucleus and in medium
- pp collisions:
 - Reference for studies with p–Pb collisions and Pb–Pb/Xe–Xe collisions
 - Studies of several aspects of QCD
- pp and p–Pb collisions:
 - Look for possible collective behaviour in small systems


Brazil in ALICE

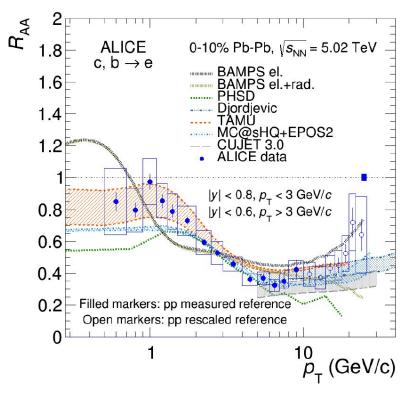

- Contribute to the study of the Quark-Gluon Plasma through a relevant participation in the **ALICE** experiment
 - Physics analysis
 - Development of state-of-the-art instrumentation
- Current Man power
 - 4 Institutes
 - 10 faculty researchers + 1 postdoc (1.75% of ALICE)
 - 12 PhD thesis defended + 6 PhD active students (1.4% of ALICE)

Jet Quenching and Heavy Flavour

- Hard scattering of partons during the collision
- Excellent probe of the medium properties due to energy loss
- Heavy quarks of special interest since they are produced at the early stages of the collision

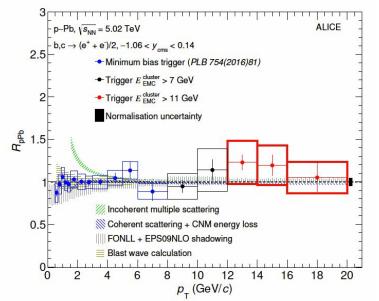
Jet Quenching and Heavy Flavour

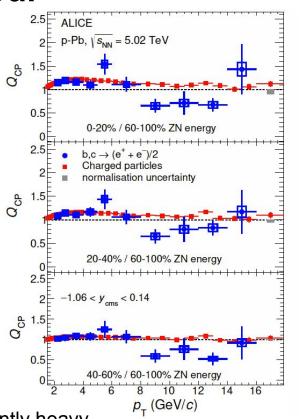
 $R_{\rm AA} = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{\langle T_{\rm AA}
angle {
m d}\sigma_{\rm pp}/{
m d}p_{\rm T}}$


- If $R_{AA} = 1$ (at high p_T): no hot medium effects and no cold nuclear matter effects.
- If $R_{AA} < 1$: hot or cold nuclear matter effects.
- The energy loss is expected to depend on the parton colour-charge, parton mass and path length.

 $\Delta E(g,u,d,s) > \Delta E(c) > \Delta E(b)$

 $R_{\rm AA}(\pi) \leq R_{\rm AA}({\rm D}) \ \leq R_{\rm AA}({\rm B})$

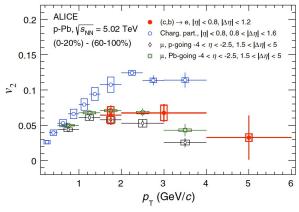

- Electrons from Heavy Flavor in Pb-Pb collisions
- Clear evidence of medium interaction
- Several models compatible with the results



PLB 804 (2020) 135377

Jet Quenching and Heavy Flavour

- Electrons from heavy quarks in **p-Pb collisions**
- Consistent with unity
 - binary scaling
- Cold Nuclear Matter effects do not modify significantly heavy quarks production at mid rapidity



Anisotropic Flow

$$Erac{d^3N}{dp_T^3}=rac{d^3N}{p_Td\phi dp_Tdy}\sum_{n=0}^\infty 2v_n cos[n(\phi-\Phi_R)]$$

- Anisotropic flow is caused by the initial asymmetries in the geometry of the system produced in a non-central collision.
 - Initial spatial anisotropy of the created particles is converted in momentum anisotropy due to the pressure gradients.
- v_2 : indicates collective motion and thermalization
- v_{3}^{-} : event-by-event fluctuations

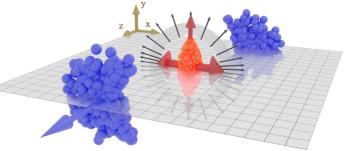
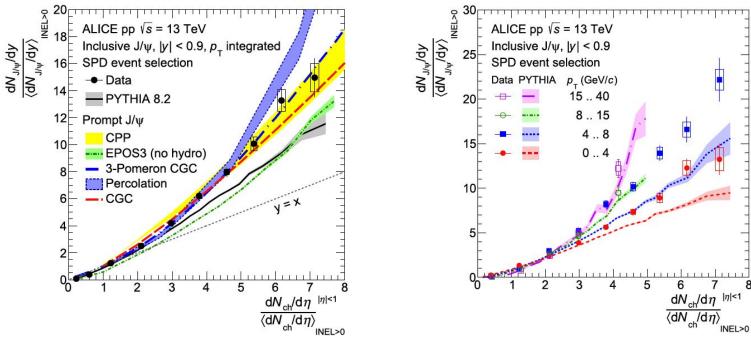
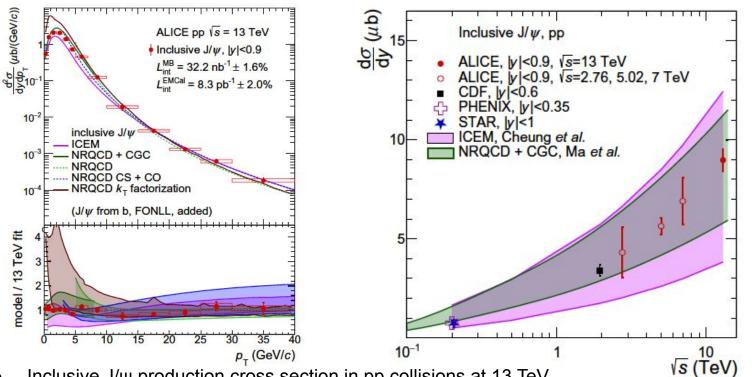


Figure from David Chinellato


- Despite no evidence of suppression of heavy flavor in **p-Pb collisions**, v₂ of electrons from heavy flavor was measured in these collisions.
 - Effect is qualitatively similar to the one observed for light flavors
- Key to understand small systems.

J/ψ vs. multiplicity

USP


11

Phys. Lett. B 810 (2020) 135758

- J/ψ self normalized yield
 - Increase faster than linear
 - Enhancement qualitatively described by several model calculations
 - Higher enhancement for higher p_T
 - PYTHIA8 which includes multi-parton interactions describes qualitatively the p_{T} dependence

J/ψ cross section

- Inclusive J/ ψ production cross section in pp collisions at 13 TeV
- The p_{τ} -integrated J/ ψ production cross section at midrapidity was calculated;
 - An approximate logarithmic dependence with the collision energy is suggested in agreement with Ο 12 model predictions.

Eur. Phys. J. C 81 (2021) 1121

Ultra peripheral collisions

The Effective Photon Flow

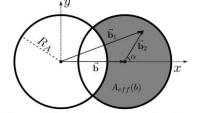
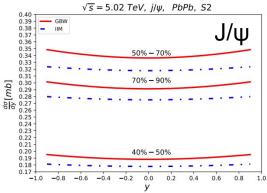
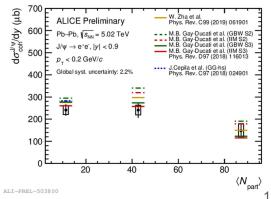


Fig. 1: Scheme of the interaction according to scenario 2.

- From the standard photon flux (N^{usual}) emitted by the projectile nucleus, only the photons that reach the geometric region of the target nucleus will be considered;
- Photons that reach the nuclear superposition region will be discarded (dominated by the strong interaction).

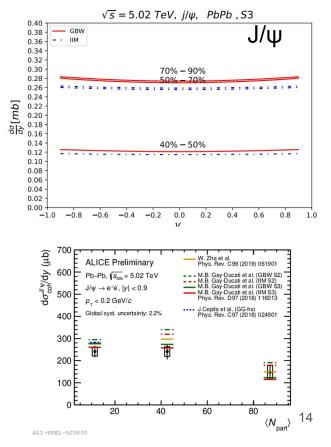

effective photon flow:


$$N^{eff}(\omega, b) = \int N^{usual}(\omega, b_1) \frac{\theta(b_1 - R_A)\theta(R_A - b_2)}{A_{eff}(b)} d^2b_2$$

spectators area:

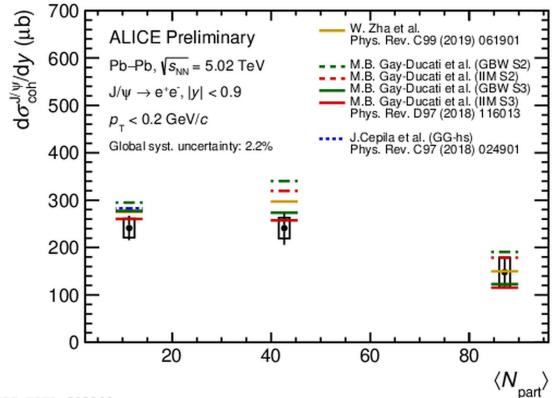
$$A_{eff}(b) = R_A^2 \left[\pi - 2\cos^{-1} \left(\frac{b}{2R_A} \right) \right] + \frac{b}{2} \sqrt{4R_A^2 - b^2}.$$

Ultra peripheral collisions


The effective photonuclear cross section

- Applying the same geometric constraint on the photonuclear cross section.
 - The dipole-core interaction will be restricted to only the dipole interaction with the part of the core that forms the spectator region

$$\sigma_{\rm dip}^{\rm nucleus}(x,r) = 2 \int d^2 b_2 \Theta(b_1 - R_A) \left\{ 1 - \exp\left[-\frac{1}{2} T_A(b) \sigma_{\rm dip}^{\rm proton}(x,r) \right] \right\}$$
$$b_1^2 = b^2 + b_2^2 + 2bb_2 \cos(\alpha)$$

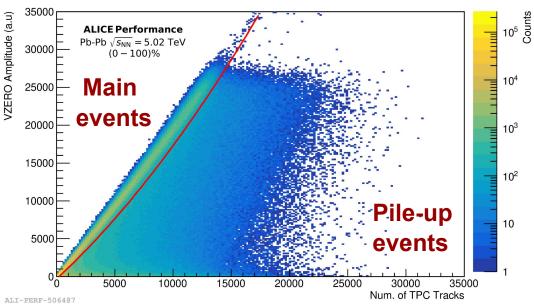

Effective photon flux and an effective photonuclear cross section

Ultra peripheral collisions

Results obtained the dipole cross section of

- Golec-Biernat Wüsthoff (GBW) and
- lancu, Itakura e Munier (IIM)

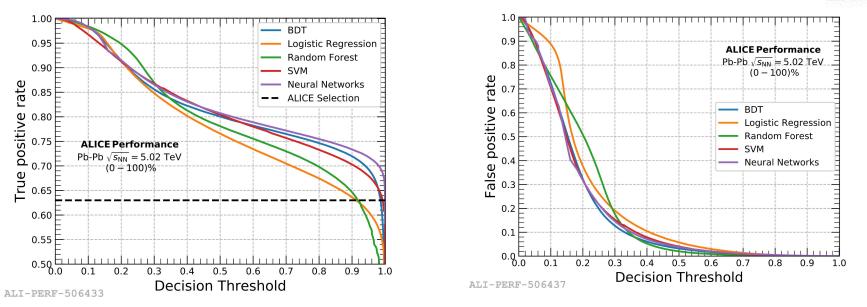
Machine Learning applied to pileup rejection



Standard Selection:

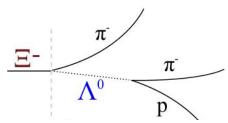
- Cuts on correlations:
 - TPC and V0 detectors
 - Quadratic polynomial
 - Rejects ~ 63% of pile-up events
 - Keeps ~ 100% of main events

ML Analysis:


- ML techniques predict the probability of an event being a pile-up event
- Use signals from different detectors:
 - ITS, V0, and TPC

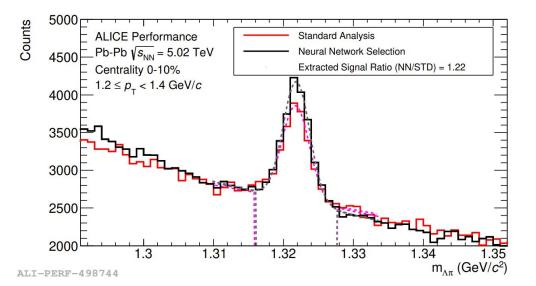
 $3.4 \times 10^{-5} x^2 + 1.42 x - 300$

Machine Learning applied to pileup rejection

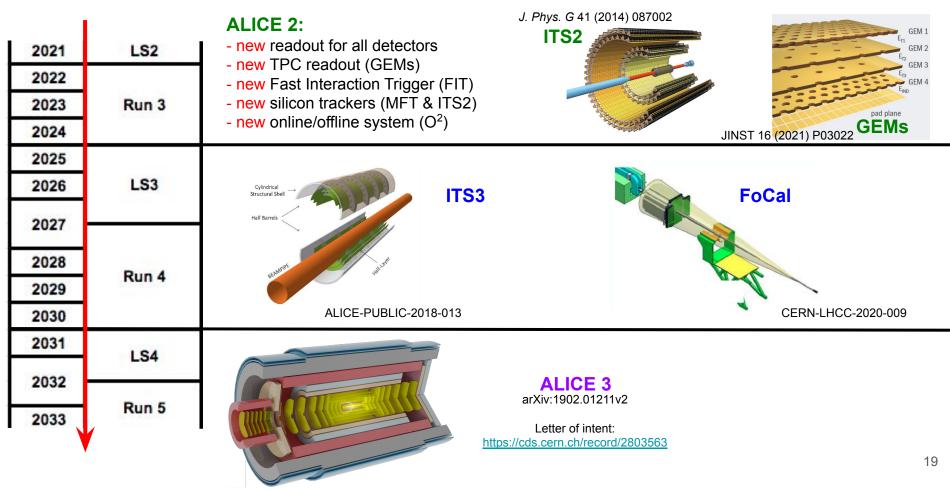

- True Positive Rate and the False Positive Rate as a function of the Decision Threshold.
- The standard event selection is presented as a constant line at 0.63.
- For a Decision Threshold value greater than 0.7:
 - All models show an improvement with relation to the standard selection
 - False Positive Rate tends to zero

Machine Learning applied to strangeness reconstruction

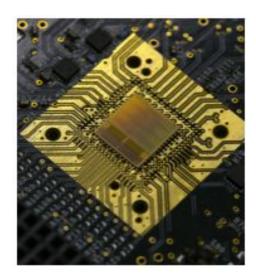
Standard Selection:


• Topological cuts:

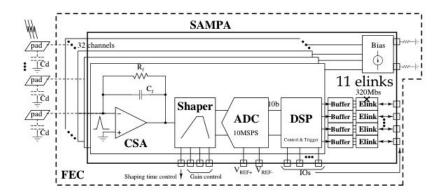
Cascade decay


ML Analysis:

- Neural Network predicts the probability of three given candidate tracks being the product of a Ξ decay.
- Selection in a probability threshold indicates simultaneous gain in efficiency and significance.

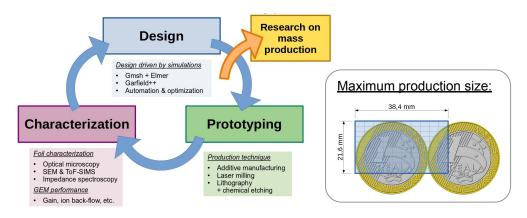


ALICE future perspectives

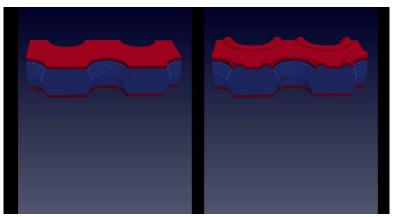


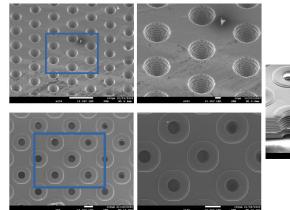
ALICE upgrade: SAMPA chip

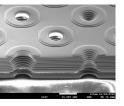
- Fully built in Brazil
- TPC and MCH readout
- A 32 input channels in 0.82 cm²
- Combines analogic and digital functionalities in the same chip
- Continuous readout



ALICE upgrade: 3D printing of MPGDs

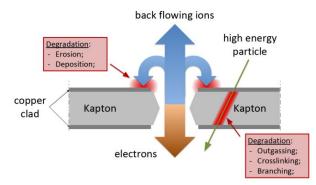

Goal: Enable fast prototyping for tests of new geometries. Smooth integration between modeling and tests.

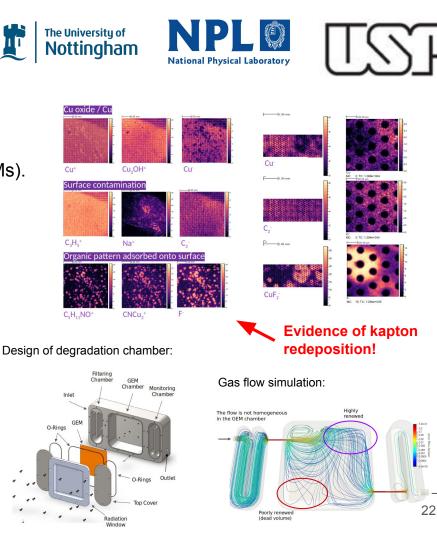



Challenges: Multi-material printing in high-resolution. **Partners:** Univ. of Nottingham and NPL.

Motivation: Suppression of charging up, ion backflow and mitigation of degradation.

Research leader: Prof. Dr. Tiago F. da Silva

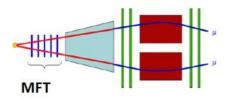




ALICE upgrade: GEM aging and degradation studies

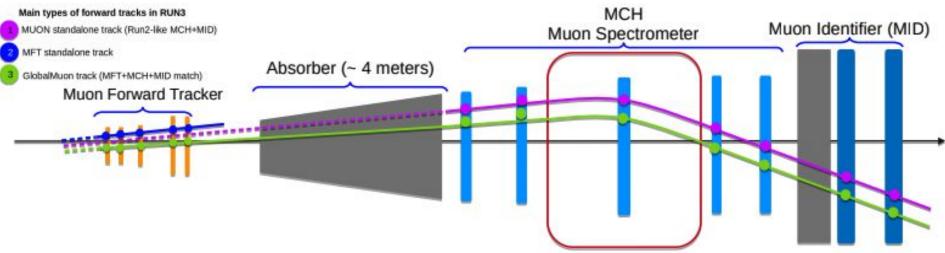
Goal: Develop a deeper understanding on aging and degradation processes of Gas Electron Multipliers (GEMs).

<u>Challenges:</u> Definition of controlled environment <u>**Partners:**</u> Univ. of Nottingham and NPL. <u>**Motivation:**</u> Enable longer lifetime and stability. <u>**Innovation:**</u> Use of advanced surface analysis. <u>**Research leader:**</u> Prof. Dr. Tiago F. da Silva</u>


ALICE upgrade: Muon Forward Tracker

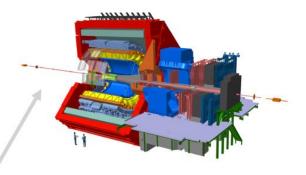
- Muon Forward Tracker (MFT)
 - A new high-resolution Si tracker (2.5 < η < 3.6)
 - Adds precise vertexing capabilities to muon tracking at forward rapidity

- Brazilian contribution:
 - Mechanical Infrastructure
 - Software development (O2)

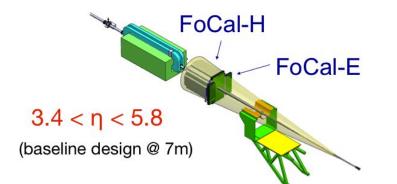


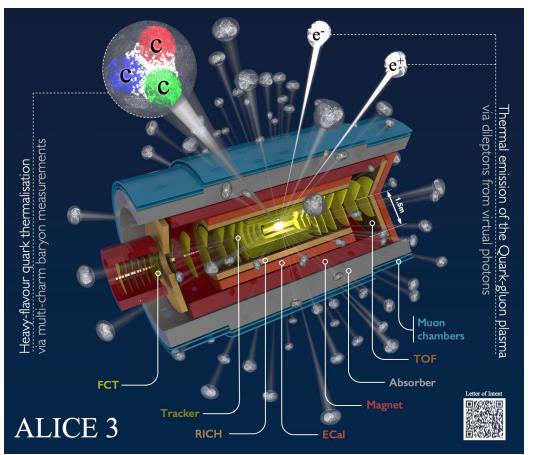
ALICE upgrade: Muon Forward Tracker

- MFT Standalone
 - Pre alignment geometry using pilot beam data
 - Reconstruction
- Global Forward Matching (MFT-MCH-MID)

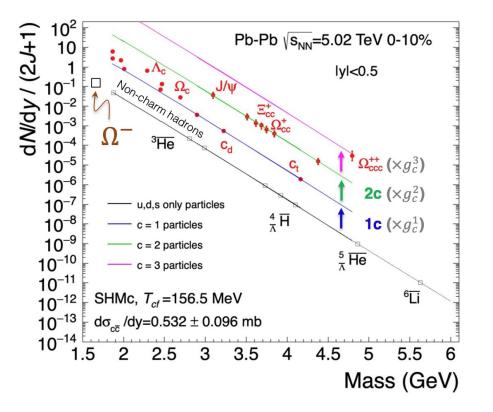


ALICE upgrade: FoCal (Run 4 - 2027)


FoCal: a highly granular Si+W electromagnetic calorimeter (FoCal-E: photons and π^0) combined with a conventional sampling hadronic calorimeter (FoCal-H : photon isolation)

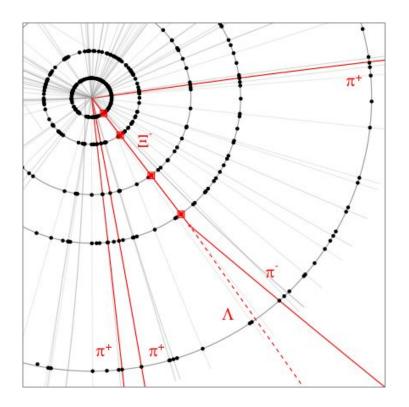

- Unique capabilities to measure small-x gluon distributions via prompt photon production
- Measurements with mesons, photons, and jets to explore the dynamics of hadronic matter at small x down to $\sim 10^{-6}$

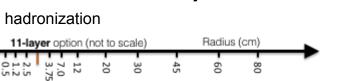
- Brazilian Hardware contribution:
 - Contribute to electronics of Pad Si layers
- First common project of all Brazilian groups in ALICE!



- → Compact all-silicon tracker with high-resolution vertex detector
- → Superconducting magnet system
- → Particle identification over large acceptance
- → Fast readout and online processing
- Studies of A–A collisions at luminosities a factor of 5-10 times higher than possible now.
- The excellent timing resolution (≈ 20 ps) will provide particle identification information.
- Ultrasoft region of phase space
 - Production of very low transverse momentum lepton pairs, photons and hadrons.
 - Heavy-flavour, quarkonia, multi-charm hadrons
 - Low-mass dileptons
 - Soft and ultra-soft photons

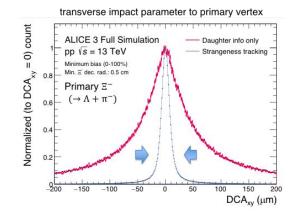
Multi-charm baryons: key insight into charm production and hadronization




What is the advantage of multi-charm baryons measurements, compared with the measurements of multi-strange baryons?

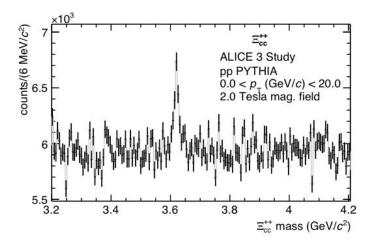
- Non-charm: mass exponential hierarchy, dominated by quarks created at phase boundary (e.g. Ω⁻)
- Charm: produced at the beginning of the collisions with fixed abundances
 - According to SHMc: still an exponential with mass but exponential displaced by g_cⁿ

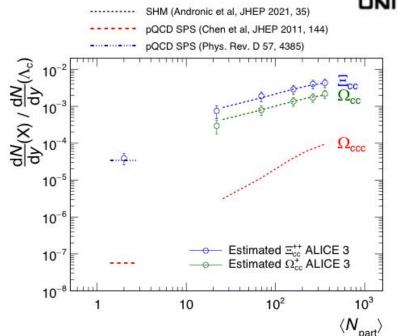
Multi-charm baryons: key insight into charm production and hadronization



Figures from David Chinellato

Strangeness tracking:


- Decay products is used to determine momenta and decay point
- Ξ⁻ hits used to determine the trajectory
 - \circ backward propagation from daughters
- Momentum precision from daughter tracks (~ 80 cm)
 Spatial precision from primary particle hits



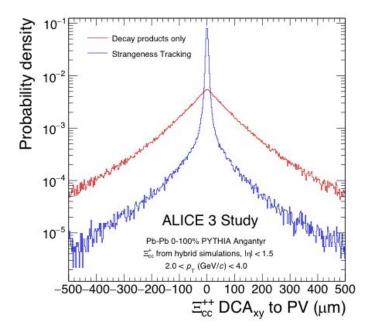
Multi-charm baryons: key insight into charm production and hadronization

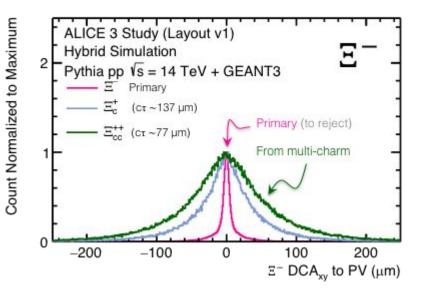
- Expected reconstruction performance for \equiv_{cc}^{++} in pp collisions
- Signal/background: 0.02
- Significance with 18 fb⁻¹: ~7.0

• Estimated ratios of multi-charm baryons to single-charm baryon yield as a function of multiplicity

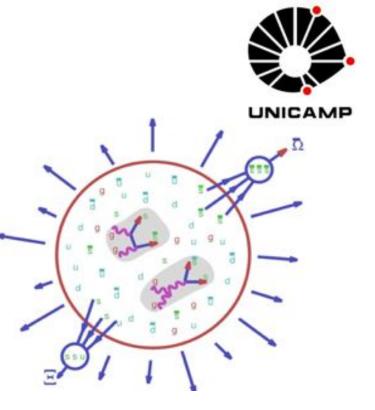
Summary

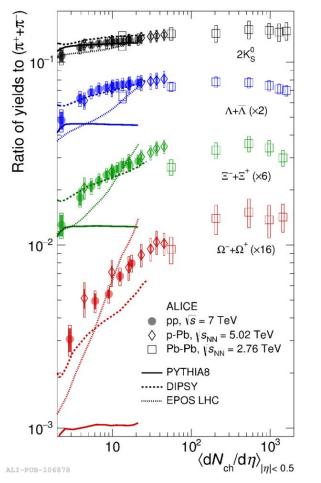
- Brazilian group participated in several scientific results
- Brazil has a crucial role in the upgrade of ALICE
 - GEM's studies
 - SAMPA
 - MFT
 - FoCal
 - ALICE3
- Brazil is now a CERN Associate Member State
 - Unique opportunity for Brazilian Industry and Science
- Run 3, Run 4 and Run 5:
 - High precision data coming soon! Stay tuned!


Thank you for your attention!


Backup

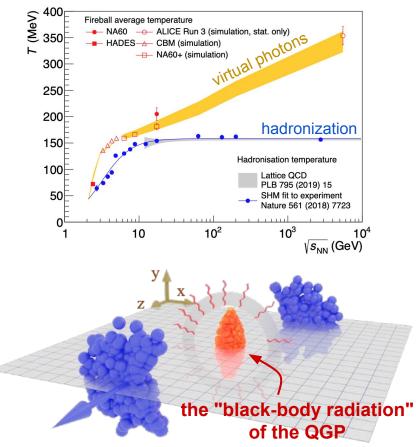
Multi-charm baryons: key insight into charm production and hadronization


- Improves separation power between primary and secondary Ξ^-
 - Important to select Ξ^{-} from Ξ_{cc}^{++}



Strangeness Enhancement

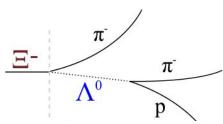
- Direct production of strange hadrons via color string breaking is suppressed
 - multi strange is even more suppressed
- Hadron reaction from single strange to multi strange is slow and kinetically disfavored
- QGP scenario brings enhanced production of strange hadrons


Strangeness Enhancement

- Strangeness enhancement in pp data, where no QGP expected
- Models fail to describe observed enhancement
- Charged particle density scales strangeness enhancement measured in different systems and different energies

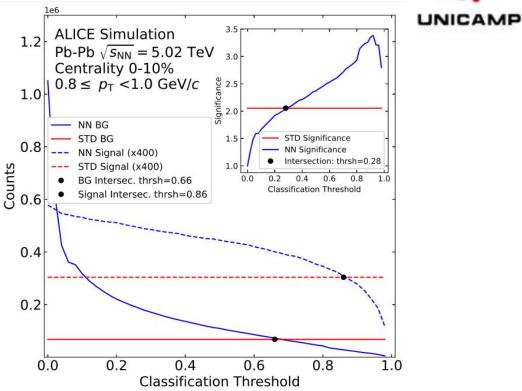
Dileptons: why are they interesting?

- QGP temperature can be measured in different ways
 - thermal models: temperature at hadronization
 - virtual photons: temperature before hadronization: larger, access to earlier stages!
- ALICE will do early measurements in Run 3 and 4
 - However, *differential measurements* are required to disentangle temperature value
 - from global average temperature ...
 - ...to precise knowledge of system evolution!

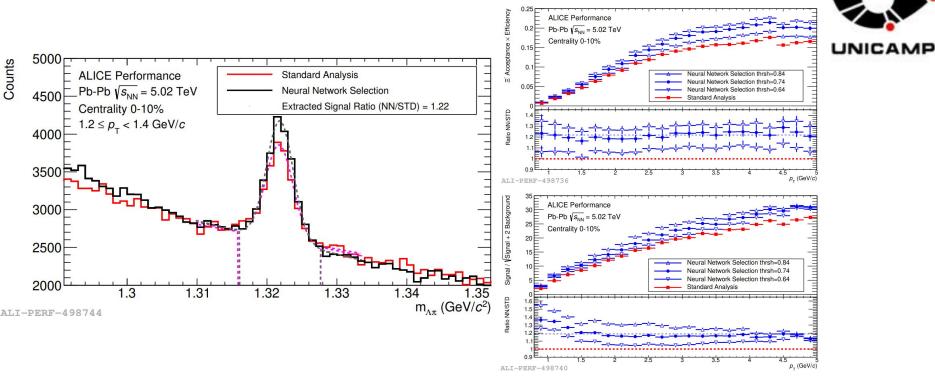


Machine Learning applied to strangeness reconstruction

Standard Selection:


• Topological cuts:

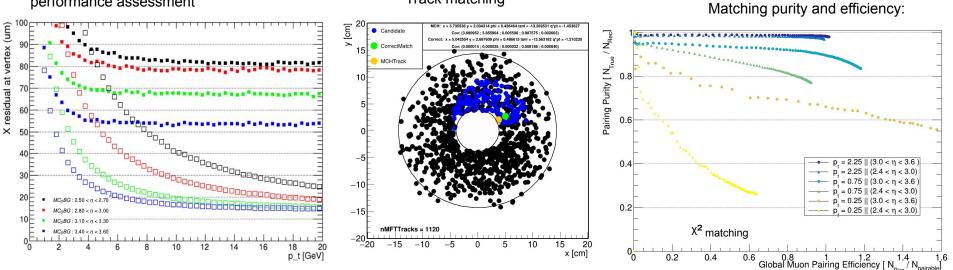
Cascade decay



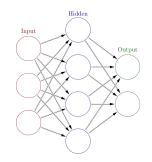
ML Analysis:

- Neural Network predicts the probability of three given candidate tracks being the product of a Ξ decay.
- Selection in a probability threshold indicates simultaneous gain in efficiency and significance.

Machine Learning applied to strangeness reconstruction



- Comparison of Invariant Mass spectra obtained with Neural Network and Standard Analysis: 22% gain in extracted signal
- Comparison of Efficiency obtained with Neural Network (±0.1 threshold) and Standard Analysis: 22% average gain
- Comparison of Significance obtained with Neural Network (±0.1 threshold) and Standard Analysis: 19% average gain 37% in the lowest p_{τ} bin


ALICE upgrade: Muon Forward Tracker

MFT standalone performance assessment

Track matching

Machine learning interface