

Development of the Slow Controller of the RPC System Link for LS2 Update of the CMS/HL-LHC Experiment

Workshop RENAFAE 2022 - CBPF-Rio Collaboration Ph.D. Candidate Eng. Fabio Marujo da Silva, MSc. (CEFET/RJ) Team Leader: Gilvan Augusto Alves, D.Sc. (CBPF) Electronic Coordinator: Behzad Boghrati, D.Sc. (IPM)

April 27th, 2022 - fmarujod@cern.ch

- Muon System
 - RPC Muon
 - Link Board/Control Board
 - New Link Board/Control Board
- Slow Controller
 - uTCA CRATE
 - AMC13/MCH
 - uHTR
 - Kintex-7 EVB
- Preliminary and Expected Results
 - Overview

RPC Muon - CMS HL-LHC Upgrade (Phase-2):

System Muon: Upgrade nas FE/BE readout e RPC Link Board

Technical proposal CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886 Scope Document CERN-LHCC-2015-019 https://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like selection 750 kHz output
- HLT output 7.5 kHz

Calorimeter Endcap https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- · Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to η ≈ 3.8

Barrel Calorimeters

MIP Timing Detector

Precision timing with:

https://cds.cern.ch/record/2296612

Barrel layer: Crystals + SiPMs

https://cds.cern.ch/record/2283187

- + ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems https://cds.cern.ch/record/2283189

RPC link -board

DT & CSC new FE/BE readout

New GEM/RPC 1.6 < n < 2.4

New Hardware

- Control Board
- Link Board

- Extended coverage to n ≈ 3
 Beam Radiation Instr. and
 - Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/ 2020886

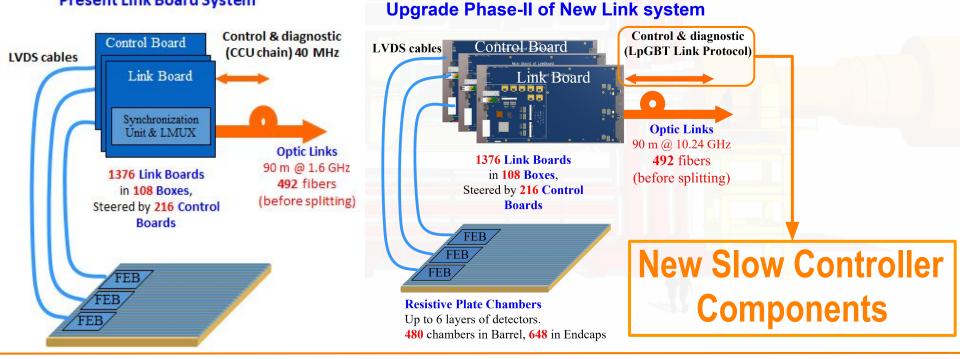
New Slow Controller

- Control Board
 Link Board
- Online RPC
 - Real Time
 - Dashboard

Innovative and extremely challenging new capabilities

F. Marujo - Slow Controller - CBPF-Rio Collaboration – Workshop RENAFAE april 27th, 2022

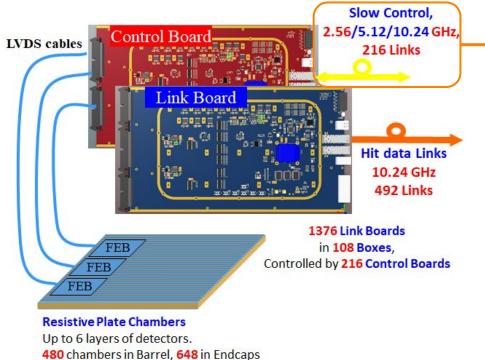
Endcap layer: Low Gain Avalanche Diodes


Link Board/Control Board

Link Board system Overview

Update motivation

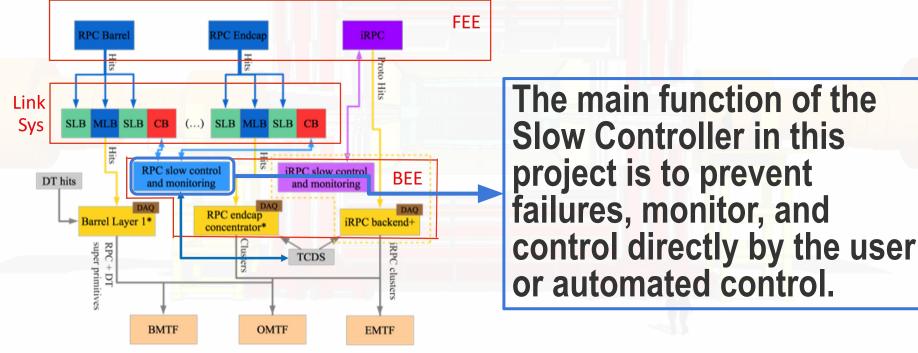
Present Link Board System



Wew Link Board/Control Board

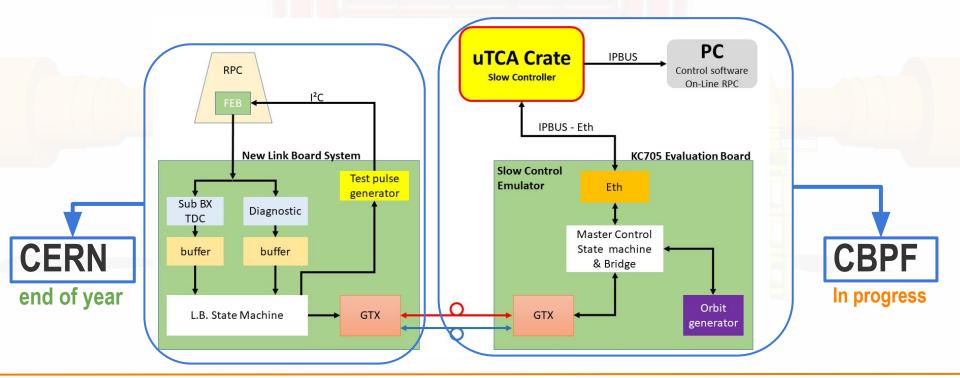
New Link Board system Overview

Based on Xilinx's Kintex-7 FPGA


New Slow Controller FPGA XC7K160T - Version Industrial **Redundant optical link Remote programming High-speed data transmission** at **FIXED LATENCE Point-to-point fiber optic** connection between the control boards and the Slow Controller

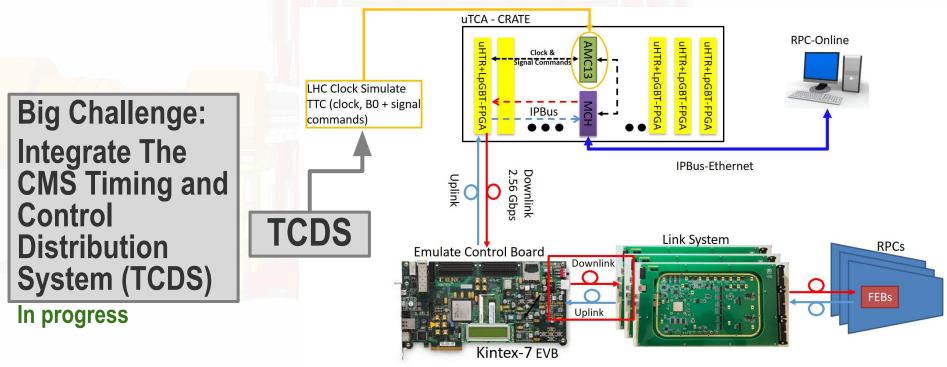
What is Slow Controller?

Slow Controller is Subsystem to monitor/control one or more systems



Slow Controller development

Implementation: FPGA-Kintex7, Rack uTCA and AMC13

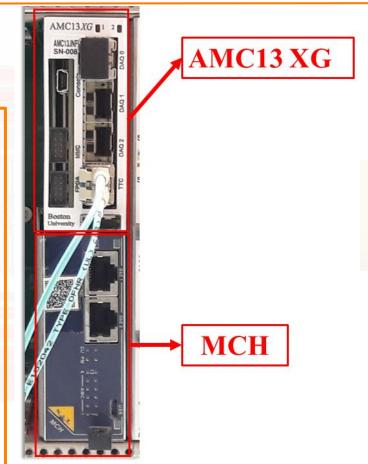


Slow Controller development

Hardware Implementation for Slow Controller

uTCA CRATE

Main Hardware modules



AMC13/MCH

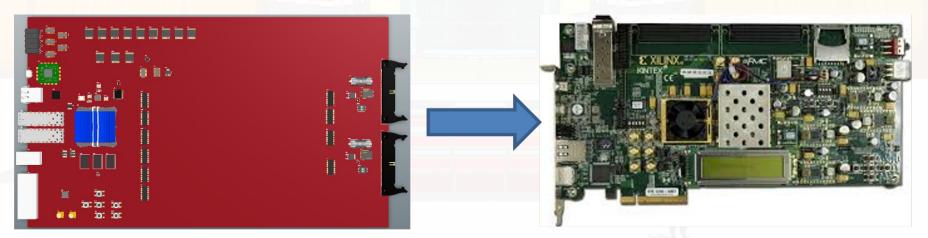
Main Hardware modules

- The AMC13XG: a new generation clock/timing/DAQ module for CMS µTCA
 - Supports 10 gigabit optical fiber and backplane interfaces
- Implementation using Xilinx Kintex-7TM FPGAs
- **μTCA MCH Ethernet switch**
 - External applications can perform READ, WRITE, and RMW transactions on this bus by way of Internet Protocol (IP) packets

uHTR

Main Hardware modules

µTCA Trigger and Readout Module (uHTR)
 Front-end data links (1.6 Gbps and 4.8/5.0 Gbps)
 Data links which carry DAQ data from front FPGA to back FPGA (4 Gbps)
 DAQ data output format to AMC13/DTC
 "QIE Reset" broadcast TTC/TCDS command



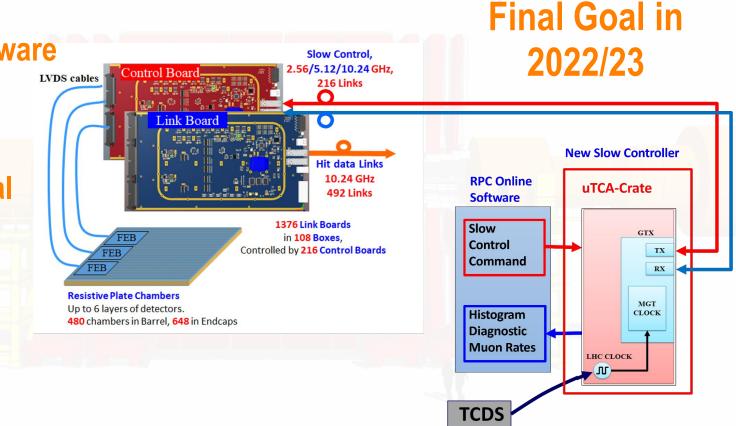
Kintex-7 EVB

Main Hardware modules

New Control Board Unavailable yet! Solution: Using Kit KC705 Evaluation Board

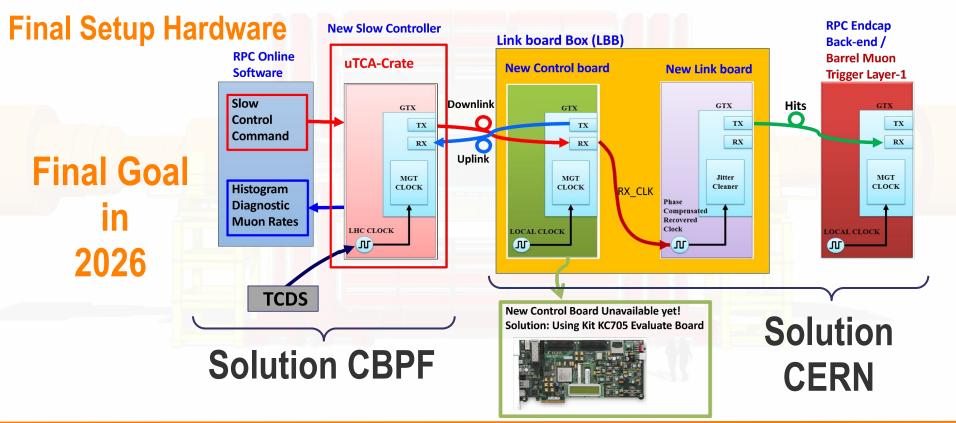
In process: New Control Board

Kit KC705 Emulate Control Board



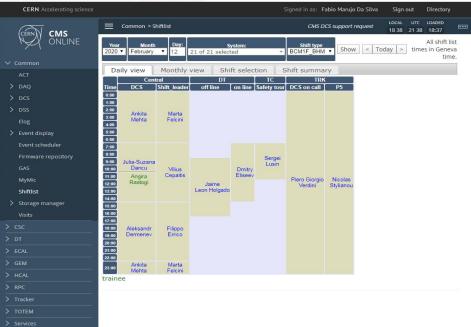
Overview

Now Setup Hardware


Solution CBPF

 Test individual modules
 Connectivity
 Hardware Integration

Overview


Preliminary and Expected Results

Overview

Expected Results in 2026

Slow Controller Operation-Online RPC (Back-End) software uses Slow Controller

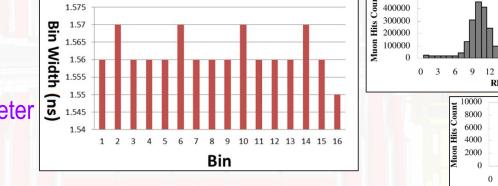
By Online RPC FEB Threshold Setting TTC clock precision adjustment (LHC) windows configuration open/closed FPGA configuration file (remote programming)

Preliminary and Expected Results

Overview

Expected Results in 2026

The ONLINE Software: Request/control services through Slow controller


CMS Online RPC

Slow Controller Calibration mode Link Board Parameter

Setting

- Control Board
- Parameter setting
- Physics RUN
- Standby
- HistogramDiagnostic

FEB Test

العالية وخطيته

15 18 21 24 27 30

RPC Strip

 10000000
 2018-03-26
 10:26:25
 HBB2 / 1/F (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 10000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

 1000000
 - 2 PR30 / 1/5 (worked)
 - 2 PR30 / 1/5 (worked)

