

Interação de estado final em decaimentos hadronicos de 3 corpos no LHCb: mecanismos para entender a Violação de CP em decaimentos de mésons BeD

Patricia C. Magalhães (ITA/UOB/LHCb)

Ignacio Bediaga (CBPF/LHCb) and Tobias Frederico (ITA)

Motivation

- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}{ }_{\text {LHCP }}$ massive localized Acp
- suggest dynamic effect

- middle looks "empty"

new one CERN conference
FSI as source of CP asymmetry in B decays

update Motivation

- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$LHCD new one still massive localized Acp

- Ist observation in charm 侽 $2019 A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

$$
\Delta A_{C P}=(-15.4 \pm 2.9) \times 10^{-4}
$$

\rightarrow direct CP asymmetry observation

- $A_{C P}\left(K^{-} K^{+}\right)=(0.04 \pm 0.12$ (stat) ± 0.10 (syst) $) \%$

$$
\longrightarrow A_{C P}\left(\pi^{-} \pi^{+}\right)=(0.07 \pm 0.14 \text { (stat) } \pm 0.11 \text { (syst) }) \%
$$

$\rightarrow \quad$ CPV on $D \rightarrow h h h ?$
\rightarrow searches in many process at LHCb, BESIII, Belell
\rightarrow can lead to new physics (DCS for ex)
\rightarrow understand the mechanism in two-body is crucial to three-body studies

CPV on data: Puzzle!

- condition to CPV

$$
A_{C P}=\frac{\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})}{\Gamma(M \rightarrow f)+\Gamma(\bar{M} \rightarrow \bar{f})}
$$

- $2 \neq$ amplitudes, SAME final state with \neq strong $\left(\delta_{i}\right)$ and weak $\left(\phi_{i}\right)$ phase

$$
\left.\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)
$$

- CPV at quark level: BSS model Bander Siverman \& Soni PRL 43 (1979) 242

- Not enough to explain

rescattering as a CPV mechanism

- CPT must be preserved

$$
\sum \Delta \Gamma_{C P}=0
$$

CPV in one channel should be compensated by another, same quantum \#, with opposite sign

$$
B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}
$$

rescattering $\pi \pi \rightarrow K K$
CPV at [1-1.6] GeV
Frederico, Bediaga, Lourenço
PRD89(2014)094013

- confirmed by LHCb Amplitude Analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$

CPV: amplitude analysis $B^{ \pm}$

$\rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$

- LHCb recent Amplitude analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm} \quad$ PRDIOI (2020) 012006; PRL 124 (2020) 031801
- $\left(\pi^{-} \pi^{+}\right)_{S-W a v e} 3$ different model:
$\rightarrow \sigma$ as BW (!) + rescattering;
$\hookrightarrow P$-vector K-Matrix;
\hookrightarrow binned freed lineshape (QMI);

Contribution
Isobar model

Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	-	-
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19 \pm 6 \pm 1$	+8 $\pm 6 \pm 1$
$f_{2}(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5 \pm 3 \pm 12$	$+53 \pm 2 \pm 12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127 \pm 4 \pm 21$	$+154 \pm 4 \pm 6$
$\rho_{3}(1690)^{0}$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26 \pm 7 \pm 14$	$-47 \pm 18 \pm 25$
S-wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35 \pm 6 \pm 10$	$-4 \pm 4 \pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115 \pm 2 \pm 14$	$+179 \pm 1 \pm 95$
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	-	
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15 \pm 6 \pm 4$	$+8 \pm 7 \pm 4$
$f_{2}(1270)$	$9.3 \pm 0.4 \pm 2.5$	$\underline{+42.8 \pm 4.1 \pm 9.1}$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_{3}(1690)^{0}$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	+19土 8土 34	$+5 \pm 8 \pm 46$
S-wave	$25.7 \pm 0.6 \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	-	-
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	-	
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25 \pm 6 \pm 27$	$-2 \pm 7 \pm 11$
$f_{2}(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13 \pm 5 \pm 21$	$+68 \pm 3 \pm 66$
$\rho(1450)^{0}$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_{3}(1690)^{0}$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36 \pm 26 \pm 46$
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	-	-

- ANA for $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$PRL 123 (2019) 231802

Contribution	Fit Fraction(\%)	$A_{C P}(\%)$	Magnitude $\left(B^{+} / B^{-}\right)$	Phase $\left.{ }^{o}\right]\left(B^{+} / B^{-}\right)$
$K^{*}(892)^{0}$	$7.5 \pm 0.6 \pm 0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_{0}^{*}(1430)^{0}$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176 \pm 10 \pm 16$
			$0.82 \pm 0.09 \pm 0.10$	$136 \pm 11 \pm 21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^{0}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175 \pm 10 \pm 15$
			$1.92 \pm 0.10 \pm 0.07$	$140 \pm 13 \pm 20$
$f_{2}(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106 \pm 11 \pm 10$
			$1.13 \pm 0.08 \pm 0.05$	$-128 \pm 11 \pm 14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81 \pm 14 \pm 15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

CPV high energy

- $B^{+} \rightarrow K^{-} K^{+} K^{+}$
- $\mathcal{A}_{c p}$ change sign $\sim D \bar{D}$ open channel

- charm intermediate processes as source of strong phase
I. Bediaga, PCM,T Frederico PLB 780 (2018) 357

- even dynamically suppressed $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1} \% \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$
- hadronic loop technique $D^{+} \rightarrow \pi^{+} K^{-} \pi^{+}$

PCM \& M Robilotta PRD 92094005 (2015)
PCM et al PRD 8409400 (201I)

hadronic loop results for $B^{ \pm} \rightarrow K^{ \pm} K^{-} K^{+}$

- Triangle hadronic loop with charm rescattering can generate a phase that change signal near DD threshold

- how this can be translated to the observable CPV?
we need inference with weak-phase!

charm rescattering in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$

- high mass CPV study in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$
that Run I
- Focus on $m_{\pi \pi}^{2}>3 \mathrm{GeV}^{2}$
\longrightarrow avoid low energy resonances
- include $\chi_{c 0}$ (expected in Run II)
- Important data features

- data shows a huge CP asymmetry around $m_{\chi_{c 0}}^{2}=11.65 \mathrm{GeV}^{2}$
- wide CP asymmetry: same source for a nonresonant amplitude and $\chi_{c 0}$ charm loop and $\chi_{c 0}$

charm rescattering in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$

- the goal was to reproduce the main observed CPV characteristics \uparrow

Amplitude projection

Acp signature

$$
\begin{aligned}
\gamma & =70^{o} \\
a_{0} & =2 e^{i\left(\delta_{s}=45^{\circ}\right)}
\end{aligned}
$$

- the goal was to reproduce the main observed CPV characteristics \uparrow

\rightarrow mimic some of the CPV pattern at high mass
\rightarrow implementing this in Runll amplitude analysis!

charm rescattering in $B_{C}^{+} \rightarrow K^{+} K^{-} \pi^{+}$

- $B_{c}^{+} \rightarrow K^{+} K^{-} \pi^{+}$
- very suppressed direct production (annihilation)

more events than expected
- Charm rescattering can be the dominant mechanism to generate $K K \pi$

I. Bediaga, PCM,T Frederico PLB 785 (2018) 581
- same favored weak vertex
- leave a signature in the middle of the Dalitz plot
- Luch new data can test it !

$B^{ \pm} \rightarrow h^{ \pm}\left(V \rightarrow h^{-} h^{+}\right)$CP Violation directly from data

- Proposed a method to extract the type of CPV in

Bediaga, Frederico, PCM PRD 94 (2016) 054028 particular regions of the phase-space directly from data

- Amplitudes contain only one vector resonance and NR background

$$
\begin{align*}
& \mathcal{M}_{+}=a_{+}^{V} e^{i \delta_{+}^{V}} F_{V}^{\mathrm{BW}} \cos \theta\left(s_{\perp}, s_{\|}\right)+a_{+}^{\mathrm{NR}} e^{i \delta_{+}^{\mathrm{NR}}} F^{\mathrm{NR}} \tag{+}\\
& \mathcal{M}_{-}=a_{-}^{V} e^{i \delta_{-}^{V}} F_{V}^{\mathrm{BW}} \cos \theta\left(s_{\perp}, s_{\|}\right)+a_{-}^{\mathrm{NR}} e^{i \delta_{-}^{N R}} F^{\mathrm{NR}}
\end{align*}
$$

$$
S_{\perp} \equiv\left(p_{h_{b}}+p_{h^{ \pm}}\right)^{2}
$$

$\theta \equiv$ helicity angle

- Asymmetry \propto to square modulus of amplitude difference:

$$
\left.\begin{array}{rl}
\left|\mathcal{M}_{+}\right|^{2} \mp\left|\mathcal{M}_{-}\right|^{2}= & \left.\left[\left(a_{+}^{V}\right)^{2} \mp\left(a_{-}^{V}\right)^{2}\right]\left|F_{V}^{\mathrm{BW}}\right|^{2} \cos ^{2} \theta\left(s_{\perp}, s_{\|}\right)\right)+\left[\left(a_{+}^{\mathrm{NR}}\right)^{2} \mp\left(a_{-}^{\mathrm{NR}}\right)^{2}\right]\left|F^{\mathrm{NR}}\right|^{2} \\
& +2 \cos \theta\left(s_{\perp}, s_{\|}\right)\left|F_{V}^{\mathrm{BW}}\right|^{2}\left|F^{\mathrm{NR}}\right|^{2} \times \\
\left\{\left(m_{V}^{2}-s_{\|}\right)\left[a_{+}^{V} a_{+}^{\mathrm{NR}} \cos \left(\delta_{+}^{V}-\delta_{+}^{\mathrm{NR}}\right) \mp a_{-}^{V} a_{-}^{\mathrm{NR}} \cos \left(\delta_{-}^{V}-\delta_{-}^{\mathrm{NR}}\right)\right]\right. \\
& \left.-m_{V} \Gamma_{V}\left[a_{+}^{V} a_{+}^{\mathrm{NR}} \sin \left(\delta_{+}^{V}-\delta_{+}^{\mathrm{NR}}\right) \mp a_{-}^{V} a_{-}^{\mathrm{NR}} \sin \left(\delta_{-}^{V}-\delta_{-}^{\mathrm{NR}}\right)\right]\right\}
\end{array}\right\}
$$

$B^{ \pm} \rightarrow h^{ \pm}\left(V \rightarrow h^{-} h^{+}\right)$CP Violation directly from data

Bediaga, Frederico, PCM PRD 94 (2016) 054028

- we select a small region around the resonance in $\mathrm{s} \|$ and look for the distribution $\Delta\left|\mathcal{M}^{2}\right|$ on s_{\perp}
- $s_{\|} \approx m_{V}^{2} \rightarrow \cos \theta(s \perp)$
- can parametrize $\Delta|\mathcal{M}|^{2}=a\left(x-c_{0}\right)^{2}+b\left(x-c_{0}\right)+c$ for $\cos \theta=x-c_{0}$

$$
\mathrm{a} \Rightarrow \text { direct vector } A_{C P}
$$

$$
b \Rightarrow \text { interference }
$$

$\mathbf{c} \Rightarrow$ direct NR $A_{C P}$

$$
A_{C P}=\frac{a^{+}-a^{-}}{a^{+}+a^{-}}
$$

- Applied to LHCb runll data!

Decay channel	Vector Resonance	$\mathcal{A}_{C P}^{V} \pm \sigma_{\text {stat }} \pm \sigma_{\text {syst }}$	
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}$	$-0.004 \pm 0.017 \pm 0.007$	(0.2σ)
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}$	$+0.150 \pm 0.019 \pm 0.008$	(7.2σ)
	$K^{*}(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}$	$-0.015 \pm 0.021 \pm 0.007$	(0.7σ)
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	$K^{*}(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}$	$+0.007 \pm 0.054 \pm 0.028$	(0.1σ)
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	$\phi(1020) \rightarrow K^{+} K^{-}$	$+0.004 \pm 0.010 \pm 0.006$	(0.2σ)

Global CPViolation

- understand global asymmetries in LHCb data

Decay channel	$\Delta \Gamma_{C P}\left(10^{6} \mathrm{~s}^{-1}\right)$
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$+0.84 \pm 0.25$
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	-0.68 ± 0.17
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$+0.53 \pm 0.13$
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	-0.39 ± 0.07

U-spin: $\quad \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-0.46 \pm 0.16$ and $\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}=-0.77 \pm 0.27$

U-spin symmetry: Bhattacharya, Gronau, Rosner, PLB 726 (2013) $\left.337 \begin{array}{c}\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)=-\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right), \\ \Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)\end{array}\right)=-\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)$.

U-spin \& FSI ? $\frac{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=1.59 \pm 0.62$ and $\frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}=1.77 \pm 0.55$ only U-spin don't work

Global CPViolation

$$
\begin{aligned}
\Delta \Gamma_{C P}\left(h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) & =\Gamma\left(B^{-} \rightarrow h_{1}^{-} h_{2}^{+} h_{3}^{-}\right)-\Gamma\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{-} h_{3}^{+}\right) \\
& =A_{C P}\left(B^{ \pm} \rightarrow h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) \mathcal{B}\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{+} h_{3}^{-}\right) / \tau\left(B^{+}\right)
\end{aligned}
$$

Bediaga, Frederico, PCM,Torres Machado PLB 824 (2022) I36824

$$
q=d, s
$$

$$
\begin{aligned}
& A\left(B^{u} \rightarrow f^{q}\right)=\left\langle f_{o u t}^{q}\right| \mathcal{H}_{\mathrm{w}}\left|B^{u}\right\rangle=V_{u b} V_{u q}^{*}\left\langle f_{o u t}^{q}\right| U^{q}\left|B^{u}\right\rangle+V_{c b} V_{c q}^{*}\left\langle f_{o u t}^{q}\right| C^{q}\left|B^{u}\right\rangle \\
& A\left(\overline{B^{u}} \rightarrow \bar{f}^{q}\right)=\left\langle\bar{f}_{o u t}^{q}\right| \mathcal{H}_{\mathrm{w}}\left|\overline{B^{u}}\right\rangle=V_{u b}^{*} V_{u q}\left\langle\bar{f}_{o u t}^{q}\right| \bar{U}^{q}\left|\overline{B^{u}}\right\rangle+V_{c b}^{*} V_{c q}\left\langle\bar{f}_{o u t}^{q}\right| \bar{C}^{q}\left|\overline{B^{u}}\right\rangle
\end{aligned}
$$

$$
\mathcal{U}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| U^{q}\left|B^{u}\right\rangle \quad \mathcal{C}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| C^{q}\left|B^{u}\right\rangle
$$

- $\Delta \Gamma_{C P}\left(q_{i}\right)=4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \sum_{j, k} \operatorname{Im}\left[S_{j, i} S_{k, i}^{*} \mathcal{U}_{q_{j}}^{*} \mathcal{C}_{q_{k}}\right]$
- S-matrix unitarity and CPT invariance applied to 2-coupled-channel $\pi \pi \leftrightarrow K K$ $\longrightarrow \sum \Delta \Gamma_{C P}=0 \rightarrow \Delta \Gamma\left(q_{\pi \pi}\right)=-\Delta \Gamma\left(q_{K K}\right)$
- $\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=-0.73 \pm 0.23 \quad \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-0.81 \pm 0.32$

FSI as the source of CPV

- D and \bar{D} can decay to $\pi \pi$ and KK

- Describe amplitudes decays implying three constraints:
- CPT invariance relates channels with same quantum numbers

$$
\rightarrow \sum \Delta \Gamma_{C P}=0
$$

- Watson theorem relates the strong phase from the rescattering process to the decay amplitudes
- the unitarity of the strong S-matrix.

Decay amplitudes

- dressing the weak tree topology with FSI

- $D^{0} \rightarrow K K$

$$
\rightarrow \mathcal{A}_{D^{0} \rightarrow K K}=\eta \mathrm{e}^{2 i \delta_{K K}} V_{c s}^{*} V_{u s} a_{K K}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c d}^{*} V_{u d} a_{\pi \pi}
$$

$\rightarrow \mathcal{A}_{\bar{D}^{0} \rightarrow f}$ same with CKM cc.

- $D^{0} \rightarrow \pi \pi$

$\rightarrow \mathcal{A}_{D^{0} \rightarrow \pi \pi}=\eta \mathrm{e}^{2 i \delta_{\pi \pi}} V_{c d}^{*} V_{u d} a_{\pi \pi}+i \sqrt{1-\eta^{2}} \mathrm{e}^{i\left(\delta_{\pi \pi}+\delta_{K K}\right)} V_{c s}^{*} V_{u s} a_{K K}$
- $a_{K K}$ and $a_{\pi \pi}$ do not carry any or strong phases \rightarrow production

Final values for $A_{C P}$

- $A_{C P}(f) \approx \pm 2 \frac{-\operatorname{Im}\left[V_{c s}^{*} V_{u s} V_{c d} V_{u d}^{*}\right]}{\left|V_{c s}^{*} V_{u s} V_{c d} V_{u d}^{*}\right|} \eta^{-1} \sqrt{1-\eta^{2}} \cos \phi\left[\frac{\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right]^{ \pm \frac{1}{2}}$
- $\operatorname{Br}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(1.455 \pm 0.024) \times 10^{-3}$

$$
\operatorname{Br}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(4.08 \pm 0.06) \times 10^{-3}
$$

- $\eta \approx 0.973$ (from Pelaez Parametrization)
$\rightarrow A_{C P}(\pi \pi)=(0.47 \pm 0.13) \times 10^{-3}$:
$\rightarrow A_{C P}(K K)=-(0.17 \pm 0.19) \times 10^{-3}$

$$
\Delta A_{C P}^{t h}=-(0.64 \pm 0.18) \times 10^{-3}
$$

SM like!

$$
\Delta A_{C P}^{\mathrm{LHCb}}=-(1.54 \pm 0.29) \times 10^{-3}
$$

- In three-body this effect will be bigger and phase-space distributed $\hookrightarrow \operatorname{SCS} D^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$and $D^{+} \rightarrow \pi^{+} K^{-} K^{+}$have exactly the same WV

Final remarks

- Crucial and profit theoretical x experimental Colaboration (Bediaga-CBPF/LHCb, Frederico-ITA, PCM-ITA/UOB/LHCb)
We investigate the FSI role in B and D hadronic decays
\longrightarrow our phenomenological models have been implemented to LHCb data
- B decays: understand of CPV at low and high mass regions
$\longrightarrow \pi \pi \rightarrow K K$ rescattering dominates the global $A_{C P}$ in $B \rightarrow h h h$
\longrightarrow make predictions to neutron modes!
Charm rescattering triangles is an important mechanism
\hookrightarrow interference produce similar CPV data signature
\longrightarrow developed a technique to identify the type of CPV directly from data
- Bc decays:

main mechanism to produce this final state

Final remarks

- D decays: we predicted $\Delta A_{C P}$ with FSI approach compatible with LHCb
- the key ingredient is the coupling between $\pi \pi$ and $K \bar{K}$ channels as source of strong phase in a CPT invariant framework

\leftrightarrows new measurement from LHCb will put a straight constraint
- much more to came! \#staysafe

Backup slides

form factor for $B^{+} \rightarrow W^{+} \overline{D^{0}}$ (single pole B^{*})

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\overline{D^{0} D^{0} \rightarrow K K}}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}, \rightarrow \Delta_{D^{+*}}=s-m_{D^{*+}}^{2}$
- $A=i C m_{a}^{2} T_{\overline{D^{0} D^{0}} \rightarrow K K}\left(s_{23}\right) \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}$
\rightarrow solved by Feynman technique

Charm rescattering $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$

- Amplitudes projections

\longrightarrow minima in different positions (\neq thresholds)
$\longrightarrow \quad \neq$ mass parameters inside triangle and rescattering amplitudes are relevant
Projection $\mathrm{m}_{\pi^{+} \mathrm{K}}^{2}$

- In principle FSI in D, \bar{D} can include multiple mesons
- general S-matrix can mix this FSI states

$$
S=\left(\begin{array}{cccc}
S_{2 M, 2 M} & S_{2 M, 3 M} & S_{2 M, 4 M} & \cdots \\
S_{3 M, 2 M} & S_{3 M, 3 M} & S_{3 M, 4 M} & \cdots \\
S_{4 M, 2 M} & S_{4 M, 3 M} & S_{4 M, 4 M} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

- $D^{0} \rightarrow \pi^{+} \pi^{-}$and $D^{0} \rightarrow K^{+} K^{-}$
assume only 2 couple-channels will contribute to FSI , ie the dominant one $K \bar{K}$
$\rightarrow \quad S_{2 M, 2 M}=\left(\begin{array}{cc}S_{\pi \pi, \pi \pi} & S_{\pi \pi, K K} \\ S_{K K, \pi \pi} & S_{K K, K K}\end{array}\right)$

$$
\begin{aligned}
& S_{\pi \pi, \pi \pi}=\eta \mathrm{e}^{2 i \delta_{\pi \pi}} \quad S_{K K, K K}=\eta \mathrm{e}^{2 i \delta_{K K}} \\
& S_{\pi \pi, K K}=S_{K K, \pi \pi}=\stackrel{\sqrt{1-\eta^{2}} \mathrm{e}^{2\left(\delta_{\pi \pi}+\delta_{K K}\right)}}{ }
\end{aligned}
$$

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the $2 M$ channel based on I/Nc counting
- ignore $\eta \eta$ channel once their coupling to the $\pi \pi$ channel are suppressed with respect to $K \bar{K}$.
- CPT constraint restricted to the two-channels: $\sum_{f=(\pi \pi, K K)}\left(\left|\mathcal{A}_{D^{0} \rightarrow f}\right|^{2}-\left|\mathcal{A}_{\bar{D}^{0} \rightarrow f}\right|^{2}\right)=0$

Watson theorem

- strong phases $\delta_{\pi \pi}, \delta_{K K}$ and $\delta_{\pi \pi \rightarrow K K}$ are the same independent of the initial process
\rightarrow we can use CERN-Munich data from 80's
- $\pi \pi \rightarrow \pi \pi$

Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (2019) I2, I008
amplitude $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right]$.
\rightarrow elasticity drops dramatically near $K \bar{K} \rightarrow$ strongly couple

Watson theorem

- $\pi \pi \rightarrow K K$

$$
\rightarrow S_{\pi \pi, K K}(s)=\imath \sqrt{1-\eta^{2}} \mathrm{e}^{\imath\left(\delta_{\pi \pi}+\delta_{K K}\right)}=i 4 \sqrt{\frac{q_{\pi} q_{K}}{s}}\left|g_{0}^{0}(s)\right| e^{i \phi_{0}^{0}(s)} \Theta\left(s-4 m_{K}^{2}\right)
$$

Pelaez and Rodas, Eur. Phys. J. C 78, 897 (20I8)

Cohen et al., Phys. Rev. D 22, 2595 (I980) Etkin et al., Phys. Rev. D 25, I786 (1982)

- Pelaez parametrization @ M_{D}^{2} :
$\left|g_{0}^{0}\left(M_{D}^{2}\right)\right| \approx 0.125 \pm 0.025 \quad \rightarrow \quad \sqrt{1-\eta^{2}} \approx 0.229 \pm 0.046 \quad \rightarrow \quad \eta \approx 0.973$
$\phi_{0}^{0}=\delta_{\pi \pi}+\delta_{K K} \approx 343^{\circ} \pm 8^{\circ}$

