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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Motivation
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030

68

Kππ KKK

KKππππ
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A study of B+
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corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
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B± ! h±h�h+ LHCb PRD90 (2014) 112004

new one  CERN conference 

suggest
 dynamic effect

middle looks
 “empty”     

CPV

FSI as source of CP asymmetry in B decays
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update Motivation

still massive localized Acp
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B± ! h±h�h+ new one
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CP asymmetry measurements

1st observation  in charm
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Acp(D0 → K+K−) − Acp(D0 → π+π−)2019

is estimated to be 0.3 × 10−4. A systematic uncertainty
associated to the presence of background components
peaking in mðD0πÞ and not in mðD0Þ is determined by
fits to the mðD0Þ distributions [60], where these compo-
nents are modeled using fast simulation [64]. The main
sources are the D0 → K−πþπ0 decay for the KþK− final
state, and the D0 → π−μþνμ and D0 → π−eþνe decays for
the πþπ− final state. Yields and raw asymmetries of the
peaking-background components measured from the fits
are then used as inputs to pseudoexperiments designed to
evaluate the corresponding effects on the determination of
ΔACP. A value of 0.5 × 10−4 is assigned as a systematic
uncertainty.
In the case of μ-tagged decays, the fractions of recon-

structed B̄ decays can be slightly different between the
K−Kþ and π−πþ decay modes, which could lead to a
small bias in ΔACP. Using the LHCb measurements of
the b-hadron production asymmetries [50], the systematic
uncertainty on ΔACP is estimated to be 1 × 10−4. The
combination of a difference in the B reconstruction
efficiency as a function of the decay time between the
D0 → K−Kþ and D0 → π−πþ modes and the presence of
neutral B-meson oscillations may also cause an imperfect
cancellation of APðBÞ in ΔACP. The associated systematic
uncertainty is estimated to be 2 × 10−4.
All individual contributions are summed in quadrature to

give total systematic uncertainties on ΔACP of 0.9 × 10−4

and 5 × 10−4 for the π-tagged and μ-tagged samples,
respectively. A summary of all systematic uncertainties
is reported in Table I. Other possible systematic uncertain-
ties are investigated and found to be negligible.
Numerous additional robustness checks are carried out

[60]. The measured value of ΔACP is studied as a function
of several variables, notably including the azimuthal angle,
χ2IP, transverse momentum, and pseudorapidity of π-tagged
and μ-tagged D0 mesons as well as of the tagging pions or
muons; the χ2 of theD$þ and B vertex fits; the track quality
of the tagging pion; and the charged-particle multiplicity in
the event. Furthermore, the total sample is split into
subsamples taken in different run periods within the years

of data taking, also distinguishing different magnet polar-
ities. No evidence for unexpected dependences of ΔACP is
found in any of these tests. A check using more stringent
PID requirements is performed, and all variations of ΔACP
are found to be compatible within statistical uncertainties.
An additional check concerns the measurement of ΔAbkg,
that is the difference of the background raw asymmetries in
K−Kþ and π−πþ final states. As the prompt background
is mainly composed of genuine D0 candidates paired
with unrelated pions originating from the PV, ΔAbkg is
expected to be compatible with zero. A value of ΔAbkg ¼
ð−2& 4Þ × 10−4 is obtained.
The difference of time-integrated CP asymmetries of

D0 → K−Kþ and D0 → π−πþ decays is measured using
13 TeV pp collision data collected with the LHCb detector
and corresponding to an integrated luminosity of 5.9 fb−1.
The results are

ΔAπ−tagged
CP ¼ ½−18.2& 3.2ðstatÞ & 0.9ðsystÞ( × 10−4;

ΔAμ−tagged
CP ¼ ½−9& 8ðstatÞ & 5ðsystÞ( × 10−4:

Both measurements are in good agreement with world
averages [65] and previous LHCb results [42,43].
By making a full combination with previous LHCb

measurements [42,43], the following value of ΔACP is
obtained

ΔACP ¼ ð−15.4& 2.9Þ × 10−4;

where the uncertainty includes statistical and systematic
contributions. The significance of the deviation from zero
corresponds to 5.3 standard deviations. This is the first
observation of CP violation in the decay of charm hadrons.
The interpretation of ΔACP in terms of direct CP

violation and AΓ requires knowledge of the difference
of reconstructed mean decay times for D0 → K−Kþ and
D0 → π−πþ decays normalized to the D0 lifetime, as
shown in Eq. (3). The values corresponding to the present
measurements are Δhtiπ−tagged=τðD0Þ ¼ 0.135& 0.002
and Δhtiμ−tagged=τðD0Þ ¼ −0.003& 0.001, whereas that
corresponding to the full combination is Δhti=τðD0Þ ¼
0.115& 0.002. The uncertainties include statistical and
systematic contributions, and the world average of the D0

lifetime is used [66].
By using in addition the LHCb average AΓ ¼

ð−2.8& 2.8Þ × 10−4 [46,47], from Eq. (3), it is possible
to derive

ΔadirCP ¼ ð−15.7& 2.9Þ × 10−4;

which shows that, as expected, ΔACP is primarily sensitive
to direct CP violation. The overall improvement in pre-
cision brought by the present analysis to the knowledge of
ΔadirCP is apparent when comparing with the value obtained

TABLE I. Systematic uncertainties onΔACP for π- and μ-tagged
decays (in 10−4). The total uncertainties are obtained as the sums
in quadrature of the individual contributions.

Source π tagged μ tagged

Fit model 0.6 2
Mistag ) ) ) 4
Weighting 0.2 1
Secondary decays 0.3 ) ) )
Peaking background 0.5 ) ) )
B fractions ) ) ) 1
B reco. efficiency ) ) ) 2
Total 0.9 5

PHYSICAL REVIEW LETTERS 122, 211803 (2019)

211803-5

(0.04 ± 0.12 (stat) ± 0.10 (syst))%ACP(K−K+) = LHCb Phys.Lett.B 767 (2017) 177

=(0.07±0.14 (stat)±0.11 (syst))%ACP(π−π+)

can lead to new physics (DCS for ex) 

 CPV on ?D → hhh

searches in many process at LHCb, BESIII, BeleII

understand the mechanism in two-body is crucial to three-body studies 

direct CP asymmetry observation
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CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !

5

  2     amplitudes, SAME final state with    strong (   ) and weak (   ) phase�i�i6= 6=

condition to CPV

�(M ! f)� �(M̄ ! f̄) = |hf |T |Mi|2 � |hf̄ |T | M̄i|2 = �4A1A2 sin(�1 � �2) sin(�1 � �2)

weak phase

CPV on data: Puzzle!
ACP =

�(M ! f)� �(M̄ ! f̄)

�(M ! f) + �(M̄ ! f̄)

 CPV at quark level: BSS model Bander Silverman & Soni PRL 43 (1979) 242

CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !

+
+

hadronic interactions   
 as source of strong phase

Not enough to explain 
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030

68

strong phase



Patricia MagalhãesFSI to enhance CPV 6

rescattering as a CPV mechanism
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030
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confirmed by LHCb Amplitude Analysis B± ! ⇡�⇡+⇡±
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(a) (b)

(c) (d)

Figure 6: Fit projections of each model (a) in the low mlow region and (b) in the full range
of mhigh, with the corresponding asymmetries shown beneath in (c) and (d). The normalised
residual or pull distribution, defined as the di↵erence between the bin value less the fit value
over the uncertainty on the number of events in that bin, is shown below each fit projection.

indeed this occurs in B+! ⇡+⇡+⇡� decays. The CP asymmetry integrated across the
Dalitz plot is consistent, in all three models, with the value previously determined through
model-independent analysis [12].

7.3 S-wave projections

The squared amplitude and phase motion of the S-wave models as a function of m(⇡+⇡�)
can be seen in Fig. 13(a) and (b) for the isobar approach, Fig. 13(c) and (d) for the
K-matrix approach and Fig. 13(e) and (f) for the QMI approach. A comparison of all
three models, for the CP -averaged S-wave projections, can be seen in Fig. 14. The QMI
S-wave is recorded in Table 18, while the statistical and systematic correlation matrices

28

Table 1: Results for CP -conserving fit fractions, quasi-two-body CP asymmetries, and phases
for each component relative to the ⇢(770)0–!(782) model, given for each S-wave approach. The
first uncertainty is statistical while the second is systematic.

Contribution Fit fraction (10�2) ACP (10�2) B+ phase (�) B� phase (�)

Isobar model

⇢(770)0 55.5 ± 0.6 ± 2.5 +0.7± 1.1± 1.6 — —

!(782) 0.50± 0.03± 0.05 �4.8± 6.5± 3.8 �19± 6± 1 +8± 6± 1

f2(1270) 9.0 ± 0.3 ± 1.5 +46.8± 6.1± 4.7 +5± 3± 12 +53± 2± 12

⇢(1450)0 5.2 ± 0.3 ± 1.9 �12.9± 3.3± 35.9 +127± 4± 21 +154± 4± 6

⇢3(1690)0 0.5 ± 0.1 ± 0.3 �80.1± 11.4± 25.3 �26± 7± 14 �47± 18± 25

S-wave 25.4 ± 0.5 ± 3.6 +14.4± 1.8± 2.1 — —

Rescattering 1.4 ± 0.1 ± 0.5 +44.7± 8.6± 17.3 �35± 6± 10 �4± 4± 25

� 25.2 ± 0.5 ± 5.0 +16.0± 1.7± 2.2 +115± 2± 14 +179± 1± 95

K-matrix

⇢(770)0 56.5 ± 0.7 ± 3.4 +4.2± 1.5± 6.4 — —

!(782) 0.47± 0.04± 0.03 �6.2± 8.4± 9.8 �15± 6± 4 +8± 7± 4

f2(1270) 9.3 ± 0.4 ± 2.5 +42.8± 4.1± 9.1 +19± 4± 18 +80± 3± 17

⇢(1450)0 10.5 ± 0.7 ± 4.6 +9.0± 6.0± 47.0 +155± 5± 29 �166± 4± 51

⇢3(1690)0 1.5 ± 0.1 ± 0.4 �35.7± 10.8± 36.9 +19± 8± 34 +5± 8± 46

S-wave 25.7 ± 0.6 ± 3.0 +15.8± 2.6± 7.2 — —

QMI

⇢(770)0 54.8 ± 1.0 ± 2.2 +4.4± 1.7± 2.8 — —

!(782) 0.57± 0.10± 0.17 �7.9± 16.5± 15.8 �25± 6± 27 �2± 7± 11

f2(1270) 9.6 ± 0.4 ± 4.0 +37.6± 4.4± 8.0 +13± 5± 21 +68± 3± 66

⇢(1450)0 7.4 ± 0.5 ± 4.0 �15.5± 7.3± 35.2 +147± 7± 152 �175± 5± 171

⇢3(1690)0 1.0 ± 0.1 ± 0.5 �93.2± 6.8± 38.9 +8± 10± 24 +36± 26± 46

S-wave 26.8 ± 0.7 ± 2.2 +15.0± 2.7± 8.1 — —

of the behaviour of the S-wave, given in Ref. [29], shows that this CP asymmetry remains
approximately constant up to the inelastic threshold 2mK , where it appears to change
sign; this is seen in all three approaches to the S-wave description. Estimates of the
significance of this CP -violation e↵ect, obtained from the change in negative log-likelihood
between the baseline fit for each S-wave approach and alternative fits where no such CP
violation is allowed, give values in excess of ten Gaussian standard deviations (�) in all
the S-wave models.

An additional source of CP violation, associated principally with the interference
between S- and P-waves, is clearly visible when inspecting the cos ✓hel distributions
separately in regions above and below the ⇢(770)0 peak (Fig. 3(a) and (b)). Here, ✓hel is
the angle, evaluated in the ⇡+⇡� rest frame, between the pion with opposite charge to
the B and the third pion from the B decay. These asymmetries are modelled well in all
three approaches to the S-wave description. Evaluation of the significance of CP violation
in the interference between S- and P-waves gives values in excess of 25� in all the S-wave
models.

At higher m(⇡+⇡�) values, the f2(1270) component is found to have a CP -averaged

4

CPV: amplitude analysis B± ! ⇡�⇡+⇡±
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second
systematic. The fitted values of ci (c̄i) are expressed in terms of magnitudes |ci| (|c̄i|) and phases
arg(ci) (arg(c̄i)) for each B+ (B�) contribution. The top row corresponds to B+ and the bottom
to B� mesons.

Contribution Fit Fraction(%) ACP (%) Magnitude (B+/B�) Phase[o] (B+/B�)
K⇤(892)0 7.5± 0.6± 0.5 +12.3± 8.7± 4.5 0.94± 0.04± 0.02 0 (fixed)

1.06± 0.04± 0.02 0 (fixed)
K⇤

0(1430)
0 4.5± 0.7± 1.2 +10.4± 14.9± 8.8 0.74± 0.09± 0.09 �176± 10± 16

0.82± 0.09± 0.10 136± 11± 21
Single pole 32.3± 1.5± 4.1 �10.7± 5.3± 3.5 2.19± 0.13± 0.17 �138± 7± 5

1.97± 0.12± 0.20 166± 6± 5
⇢(1450)0 30.7± 1.2± 0.9 �10.9± 4.4± 2.4 2.14± 0.11± 0.07 �175± 10± 15

1.92± 0.10± 0.07 140± 13± 20
f2(1270) 7.5± 0.8± 0.7 +26.7± 10.2± 4.8 0.86± 0.09± 0.07 �106± 11± 10

1.13± 0.08± 0.05 �128± 11± 14
Rescattering 16.4± 0.8± 1.0 �66.4± 3.8± 1.9 1.91± 0.09± 0.06 �56± 12± 18

0.86± 0.07± 0.04 �81± 14± 15
�(1020) 0.3± 0.1± 0.1 +9.8± 43.6± 26.6 0.20± 0.07± 0.02 �52± 23± 32

0.22± 0.06± 0.04 107± 33± 41
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Figure 2: Distribution of m2
⇡±K⌥ . Data are represented by points for B+ and B� candidates

separately, with the result of the fit overlaid.
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.

ar
X

iv
:1

60
7.

06
13

4v
2 

 [h
ep

-e
x]

  2
6 

Ju
l 2

01
6

J/ �c0

+

K
−

D

D

K

]2c [GeV/
high

)−K+(Km
2 3 4 5

 y
ie

ld
s

+
 - 

B
− B

800−

600−

400−

200−

0
200
400
600 LHCb

change sign ~         open channel DD̄Acp
<latexit sha1_base64="zuEzrHy9JpfAuQMo/pRi+Z2nTs4=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaQKuqy6cVnBPqANYTKdtEMnkzAzKZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j447Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m94XfnVKpWCye9CyhXoRHgoWMYG0k37YHEdZjgnl2m/sZSXLfrjl1Zw60StyS1KBEy7e/BsOYpBEVmnCsVN91Eu1lWGpGOM2rg1TRBJMJHtG+oQJHVHnZPHmOzo0yRGEszRMazdXfGxmOlJpFgZkscqplrxD/8/qpDm+8jIkk1VSQxaEw5UjHqKgBDZmkRPOZIZhIZrIiMsYSE23KqpoS3OUvr5JOo+5e1huPV7XmXVlHBU7hDC7AhWtowgO0oA0EpvAMr/BmZdaL9W59LEbXrHLnBP7A+vwBBJ2T6A==</latexit>

rich cc̄ environment.

_
u

_
s

_
c

B
+

K
 +

K
 −

_
u K

 +

c

b

u

s

s

_
u

_
c

_ 
u + s

_

su +

s

c

b

Fig. 2. Left diagram: Penguin for B+ ! K�K+K+. Right diagram: double charm
partonic loop contribution to B+ ! K�K+K+.

We considered the charm penguins contributions as represented in the dia-
gram of Fig. 2. However, is very hard to precise which are the charm mass
propagating inside the loop and how does hadronization a↵ect this picture. To
guide our calculation one follows the structure (recipe) proposed by Mannel
at al. ?? to describe the center region of the Dalitz plot for B+ ! ⇡�⇡+⇡+.
The authors propose a functional form of this form factor to be:

Ap(s) = T (s)(M2
B
� s)f+(s) (1)

where f+(q2) is the B ! K vector form factor, which can assume the single
pole parametrization:

f+(s) =
1

1� s/M⇤2
Bs

(2)

for M⇤
Bs

the mass of a vector meson B⇤
s
. One identify the kernel T as the charm

bubble loop contribution. This amplitude was also calculated by Gerard and
Hu (1991)[?] and gave a simple amplitude, with a real and imaginary part
given by:
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where x = q2/m2. This is exactly the bubble loop function we know very
well, but considering a double charm propagation. The real and imaginary
distribution are shown in the Figure below for the case of m = 1.864 which is
the D0 mass:

5

 charm intermediate processes as source of strong phase I. Bediaga, PCM, T Frederico
PLB 780 (2018) 357

(p  ) 3

B
+

(p  ) 1

K
+ (p  ) 2

0
D

D 0

D
*0

Κ
 +

Κ
 −

s
+

~1%        1000 x Br [B ! DD⇤
s ] Br [B ! KKK]even dynamically suppressed

hadronic loop technique PCM & M Robilotta PRD 92  094005 (2015)
PCM et al PRD 84 094001 (2011)D+ ! ⇡+K�⇡+



Patricia MagalhãesFSI to enhance CPV

Triangle hadronic loop with charm rescattering can generate 
a phase that change signal near DD threshold

9
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how this can be translated to the observable CPV?

we need inference with weak-phase!
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charm rescattering in 

B± ! ⇡±⇡�⇡+
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high mass CPV study in

B± ! ⇡±⇡�⇡+
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Focus on m2
⇡⇡ > 3GeV 2
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avoid low energy resonances
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030

68

Bediaga, Frederico, PCM - PLBX (2020)[arXiv:2003.10019]

�c0include

data shows a huge CP asymmetry around m2
�c0

= 11.65GeV 2
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wide CP asymmetry: same source for a nonresonant amplitude and �c0

charm loop and �c0

Important data features

{wide
m2

�c0
<latexit sha1_base64="BiW9+VzbME0SJKD9G5I1A23SRwE=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4Kkkt6LHgxWMF+wFtDJvttl26uwm7m0IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZelHCmjed9OxubW9s7u6W98v7B4dGxe3La1nGqCG2RmMeqG2FNOZO0ZZjhtJsoikXEaSea3M39zpQqzWL5aGYJDQQeSTZkBBsrha4rnmph1idjFmbEy3MUuhWv6i2A1olfkAoUaIbuV38Qk1RQaQjHWvd8LzFBhpVhhNO83E81TTCZ4BHtWSqxoDrIFpfn6NIqAzSMlS1p0EL9PZFhofVMRLZTYDPWq95c/M/rpWZ4G2RMJqmhkiwXDVOOTIzmMaABU5QYPrMEE8XsrYiMscLE2LDKNgR/9eV10q5V/etq7aFeadSLOEpwDhdwBT7cQAPuoQktIDCFZ3iFNydzXpx352PZuuEUM2fwB87nD/oEky8=</latexit>

(expected in Run II)
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The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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In what follows, we are only interested in the dynamics above 3 GeV2 where
the low mass resonances contributions come mainly from their tails. Therefore,
the amplitude A±

tree can be approximated as a flat nonresonant (NR) amplitude
with the constant weak phase, �:

A±
tree = a0 e

±i� , (19)

where a0 is complex to accommodate a strong phase.
The total amplitude was simulated using Laura++ software [37] with hun-

dred thousands events. There are two main variables when two amplitudes
interfere: the relative phase between them and the relative magnitude, in prin-
ciple those quantities are fixed by a fit to data. In our toy model we have
to chose a0 and in order to have an insight on the typical results one gets by
changing this quantity. We present a systematic study with model II.

To start our simulations, it is interesting to check the signature of each ampli-
tude A±

tree and ADD̄ alone in the phase-space projected on the m⇡⇡ high invari-
ant mass4. We integrate in the m⇡⇡ low invariant mass starting at m2

⇡⇡=3 GeV2

to exclude the low energy interaction region. In Fig. 3, one can see the re-
sult from the flat NR amplitude deformed by the phase-space integral and the
hadronic loop with model II. Each of them alone does not lead to CP violation,
as expected.

5 10 15 20 25
)4/c2high (GeV-π+π

2m
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100
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300
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Amplitude projection - Nonresonant

5 10 15 20 25
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2500

3000 B-
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Figure 3: LAURA++ Toy Monte-Carlo simulation: (left) only the flat nonresonant tree
amplitude; (right) only the charm loop with rescattering amplitude (model II).

In Fig. 4, we present the study of how the amplitudes interfere with di↵erent
choices for a0. We set the relative magnitude for the NR to be twice the charm
loop and change the relative global phase between them. As one can see, the
di↵erent relative phases can result in completely di↵erent patterns, but with a
clear mark at the resonance position. In the bottom left frame in Fig. 4, the
phase di↵erence of 180o eliminates the �c0 peak and make it appears as a dip.
Whereas with 0o phase the peak is enhanced.

4defined as the higher one from the two possible pairs of ⇡+⇡� invariant masses.

10

B decay in two charmed mesons have a hadronic penguin like topology, that
together with the subsequent rescattering DD̄ � ⇡⇡ is assumed to contribute
with a strong phase.

Inspired by the isobar model description of three-body decays, the amplitude
of B± ! ⇡�⇡+⇡± decay can be parametrised by two independent contributions
as:

AB±!⇡�⇡+⇡±(s12, s23) = A±
tree(s12, s23) +ADD̄(s12, s23) , (1)

where we assume that ADD̄ amplitude is dominated by a charm hadronic loop,
Fig. 1, and A±

tree which is the dominant topology, has weak (±�) and strong
phases. Furthermore, the �c0 will be introduced as a resonant state below
threshold within the DD̄ scattering amplitude. We will exploit the model in
the high mass region of the B± ! ⇡�⇡+⇡± phase space to find out the man-
ifestation in the CP violation distribution of the DD̄ ! ⇡⇡ rescattering, with
�c0 being a resonant state below the DD̄ threshold.

A remark on the implication of CPT invariance to CP asymmetry for the
B± ! ⇡�⇡+⇡± decay in the present model is appropriate. In the framework
developed by Wolfenstein [16] (see also [29]) where the hadronic final-state inter-
actions and the CPT constraint were considered together, the CP asymmetry
seen in channels that can be coupled by strong QCD dynamics are related.
The consequence of this framework is that the sum of the partial widths for
those channels should be identical to the sum in the charge conjugated chan-
nels. Such result is more restrictive than the general CPT condition that gives
equal lifetime for a particle and its anti-particle. The Wolfenstein formalism
was further elaborated in [31], where It was considered the hadronic transition
matrix of di↵erent channels coupled by FSI in the expansion of the CP violat-
ing B decay amplitude. Restricted to two channels the leading order formalism
was applied to study the CP asymmetries seen in the B± ! K�K+K± and
B± ! K±⇡�⇡+ in the mass region where the K+K� and ⇡+⇡� channels are
strongly coupled. It explained the remarkable opposite signs and the shape of
the projected CP asymmetry. This mechanism was confirmed by the LHCb
collaboration amplitude analyses for B± ! K�K+⇡± [9] which found 65%
of asymmetry due to KK ! ⇡⇡ with a di↵erent sign of the one observed in
B+ ! ⇡+⇡+⇡� decays [8, 7], although with less intensity.

We observe that the leading order formalism also applies to the present
model of the three-body B decay where the B± ! DD̄⇡± and B± ! ⇡�⇡+⇡±

channels are coupled by the strong force and the associatedDD̄ and ⇡⇡ S-matrix
provides the FSI contribution to the decay amplitude. The CP asymmetry of
the B± ! DD̄⇡± has to receive a corresponding contribution with opposite sign
respecting CPT invariance if only this channel coupling is present. However, the
DD̄ channel can also coupled to KK as we already discussed in [11], suggesting
that the CP asymmetry in B± ! DD̄⇡± would call for contributions from final
state interaction involving more hadronic channels, a discussion that is much
beyond the scope of the present work.

Hadronic charm loop. The charm rescattering contribution to the B± !
⇡�⇡+⇡± decay can be described by a triangle loop of D mesons as the source

4

the goal was to reproduce the main observed CPV characteristics

� = 70o
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In what follows, we are only interested in the dynamics above 3 GeV2 where
the low mass resonances contributions come mainly from their tails. Therefore,
the amplitude A±

tree can be approximated as a flat nonresonant (NR) amplitude
with the constant weak phase, �:

A±
tree = a0 e

±i� , (19)

where a0 is complex to accommodate a strong phase.
The total amplitude was simulated using Laura++ software [37] with hun-

dred thousands events. There are two main variables when two amplitudes
interfere: the relative phase between them and the relative magnitude, in prin-
ciple those quantities are fixed by a fit to data. In our toy model we have
to chose a0 and in order to have an insight on the typical results one gets by
changing this quantity. We present a systematic study with model II.

To start our simulations, it is interesting to check the signature of each ampli-
tude A±

tree and ADD̄ alone in the phase-space projected on the m⇡⇡ high invari-
ant mass4. We integrate in the m⇡⇡ low invariant mass starting at m2

⇡⇡=3 GeV2

to exclude the low energy interaction region. In Fig. 3, one can see the re-
sult from the flat NR amplitude deformed by the phase-space integral and the
hadronic loop with model II. Each of them alone does not lead to CP violation,
as expected.
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Figure 3: LAURA++ Toy Monte-Carlo simulation: (left) only the flat nonresonant tree
amplitude; (right) only the charm loop with rescattering amplitude (model II).

In Fig. 4, we present the study of how the amplitudes interfere with di↵erent
choices for a0. We set the relative magnitude for the NR to be twice the charm
loop and change the relative global phase between them. As one can see, the
di↵erent relative phases can result in completely di↵erent patterns, but with a
clear mark at the resonance position. In the bottom left frame in Fig. 4, the
phase di↵erence of 180o eliminates the �c0 peak and make it appears as a dip.
Whereas with 0o phase the peak is enhanced.

4defined as the higher one from the two possible pairs of ⇡+⇡� invariant masses.

10

B decay in two charmed mesons have a hadronic penguin like topology, that
together with the subsequent rescattering DD̄ � ⇡⇡ is assumed to contribute
with a strong phase.

Inspired by the isobar model description of three-body decays, the amplitude
of B± ! ⇡�⇡+⇡± decay can be parametrised by two independent contributions
as:

AB±!⇡�⇡+⇡±(s12, s23) = A±
tree(s12, s23) +ADD̄(s12, s23) , (1)

where we assume that ADD̄ amplitude is dominated by a charm hadronic loop,
Fig. 1, and A±

tree which is the dominant topology, has weak (±�) and strong
phases. Furthermore, the �c0 will be introduced as a resonant state below
threshold within the DD̄ scattering amplitude. We will exploit the model in
the high mass region of the B± ! ⇡�⇡+⇡± phase space to find out the man-
ifestation in the CP violation distribution of the DD̄ ! ⇡⇡ rescattering, with
�c0 being a resonant state below the DD̄ threshold.

A remark on the implication of CPT invariance to CP asymmetry for the
B± ! ⇡�⇡+⇡± decay in the present model is appropriate. In the framework
developed by Wolfenstein [16] (see also [29]) where the hadronic final-state inter-
actions and the CPT constraint were considered together, the CP asymmetry
seen in channels that can be coupled by strong QCD dynamics are related.
The consequence of this framework is that the sum of the partial widths for
those channels should be identical to the sum in the charge conjugated chan-
nels. Such result is more restrictive than the general CPT condition that gives
equal lifetime for a particle and its anti-particle. The Wolfenstein formalism
was further elaborated in [31], where It was considered the hadronic transition
matrix of di↵erent channels coupled by FSI in the expansion of the CP violat-
ing B decay amplitude. Restricted to two channels the leading order formalism
was applied to study the CP asymmetries seen in the B± ! K�K+K± and
B± ! K±⇡�⇡+ in the mass region where the K+K� and ⇡+⇡� channels are
strongly coupled. It explained the remarkable opposite signs and the shape of
the projected CP asymmetry. This mechanism was confirmed by the LHCb
collaboration amplitude analyses for B± ! K�K+⇡± [9] which found 65%
of asymmetry due to KK ! ⇡⇡ with a di↵erent sign of the one observed in
B+ ! ⇡+⇡+⇡� decays [8, 7], although with less intensity.

We observe that the leading order formalism also applies to the present
model of the three-body B decay where the B± ! DD̄⇡± and B± ! ⇡�⇡+⇡±

channels are coupled by the strong force and the associatedDD̄ and ⇡⇡ S-matrix
provides the FSI contribution to the decay amplitude. The CP asymmetry of
the B± ! DD̄⇡± has to receive a corresponding contribution with opposite sign
respecting CPT invariance if only this channel coupling is present. However, the
DD̄ channel can also coupled to KK as we already discussed in [11], suggesting
that the CP asymmetry in B± ! DD̄⇡± would call for contributions from final
state interaction involving more hadronic channels, a discussion that is much
beyond the scope of the present work.

Hadronic charm loop. The charm rescattering contribution to the B± !
⇡�⇡+⇡± decay can be described by a triangle loop of D mesons as the source

4

the goal was to reproduce the main observed CPV characteristics

� = 70o
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mimic some of the CPV pattern at high mass

implementing this in RunII amplitude analysis!
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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Run II

charm rescattering in B± ! ⇡±⇡�⇡+
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Figure 3: Distribution of events for the signal region 6.2 < m(K+K�⇡+) < 6.35GeV/c2 in the
m2(K�⇡+) vs. m2(K+K�) plane for (left) OBDT > 0.12 and (right) OBDT > 0.18. The vertical
red dashed lines represent a band of width ±60MeV/c2 around the �c0 mass. The horizontal blue
dot-dashed line indicates the upper bound of the annihilation region at m(K�⇡+) = 1.834GeV/c2,
representing 17% of the available phase space area.

since no peak is seen in m(K+K�⇡+) at the B+
c mass [9].

To determine the B+
c ! �c0(! K+K�)⇡+ signal yield, the two-dimensional

m(K+K�⇡+) vs. m(K+K�) distributions are fitted simultaneously for the three BDT
bins. The m(K+K�⇡+) distribution is modelled in the same way as described above. The
m(K+K�) distribution, defined in the range 3.20 < m(K+K�) < 3.55GeV/c2, is modelled
with a Breit–Wigner function, with mean and width fixed to their known values [23],
convolved with a Gaussian resolution function, representing the �c0 ! K+K� shape, and
a first-order polynomial representing K+K� background. Figure 4 shows the projections
of the fit result. The yield obtained is N�c0 = 20.8+7.2

�6.4, with a statistical significance of
4.1 �. The fits for the D0 and B0

s regions, where no signal is observed, can be found at
Ref. [9].

The e�ciencies for the signals, ✏c, and normalization channel, ✏u, are inferred from
simulated samples and are corrected using data-driven methods as described in Ref. [20].
They include the e↵ects of reconstruction, selection and detector acceptance. An e�ciency
map defined in the m2(K�⇡+) vs. m2(K+K�) plane is computed. The e�ciency for the
annihilation region is estimated in two ways: first, by taking the simple average e�ciency
from the map for m(K�⇡+) < 1.834GeV/c2 and alternatively, by taking the e�ciency
weighted according to the sparse distribution of candidates in data in the m2(K�⇡+)
vs. m2(K+K�) plane. The average of the two values is taken as the e�ciency and the
di↵erence is treated as a systematic uncertainty (labelled as “event distribution” in Table
1) reflecting the limited knowledge of the distribution of the signal events due to low
statistics. A correction accounting for the vetoed m(K+K�) regions described above is
included. In the calculation of the observable Rf the e�ciency ratio ✏u/✏c is required.
The values obtained are 1.698± 0.015 for the annihilation region and 1.241± 0.012 for
the B+

c ! �c0(K+K�)⇡+ mode. The uncertainties are due to the limited sizes of the
simulated samples. The di↵erences between the B+ and B+

c e�ciencies are caused by the

4

charm rescattering in  B+
C → K+K−π+

I. Bediaga, PCM, T Frederico
PLB 785 (2018) 581

very suppressed  direct production (annihilation)

Charm rescattering can be the dominant mechanism to generate KKπ
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c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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 CP Violation directly from dataB± → h±(V → h−h+)
Proposed a method to extract the type of CPV in 

particular regions of the phase-space directly from data

Bediaga, Frederico, PCM
PRD 94 (2016) 054028 

B decays into a vector resonance

37

  contributions 

 Total amplitudes for  and  

 Asymmetry  to square modulus of amplitude difference

B± → h± (V → h+h−)
B+ B−

∝

S|| ≡ (ph+ + ph−)2

S⊥ ≡ (phb
+ ph±)2

θ ≡ helicity angle

Phys. Rev. D94 (2016) 054028

Direct vector Acp 
from BSS

Direct NR Acp from 
BSS

NR and vector 
interference

Amplitudes contain only one vector resonance and NR background

 Asymmetry ∝ to square modulus of amplitude difference:  

B decays into a vector resonance

37

  contributions 

 Total amplitudes for  and  

 Asymmetry  to square modulus of amplitude difference

B± → h± (V → h+h−)
B+ B−

∝

S|| ≡ (ph+ + ph−)2

S⊥ ≡ (phb
+ ph±)2

θ ≡ helicity angle

Phys. Rev. D94 (2016) 054028
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direct vector ACP direct NR ACP  NR and vector interference

B decays into a vector resonance

37

  contributions 

 Total amplitudes for  and  

 Asymmetry  to square modulus of amplitude difference

B± → h± (V → h+h−)
B+ B−

∝

S|| ≡ (ph+ + ph−)2

S⊥ ≡ (phb
+ ph±)2

θ ≡ helicity angle
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 CP Violation directly from dataB± → h±(V → h−h+)
Bediaga, Frederico, PCM
PRD 94 (2016) 054028 we select a small region around the resonance 

in s∥ and look for the distribution         on s⊥ 

what we expect to see in the data with this model?

II. INDEPENDENT METHOD TO EXTRACT ACP PARAMETERS IN B ! PV

DECAYS

To illustrate the method we begin with a simple situation were B± ! h±(V ! h+h�)

decay (h=⇡ or K) receives contributions only from one vector resonance (V) and a constant

nonresonant (NR) amplitude. Generically, one could represent this total amplitudes B+ and

B� as:

M+ = aV+e
i�V+FBW

V cos ✓(s?, sk) + anr+ ei�
nr
+ FNR, (1)

M� = aV�e
i�V�FBW

V cos ✓(s?, sk) + anr� ei�
nr
� FNR, (2)

where the FNR is a real and scalar non-resonant amplitude and �± contain both the fixed

weak and the strong phases. The vector resonance V is described by a Breit-Wigner (BW)

functions, FBW
R , that depend on sk = (ph+ + ph�)

2, one of the invariant variables at Dalitz

plot,

FBW
V (sk) =

1

m2
V � sk � imV �V (sk)

, (3)

and �V (sk) is the energy dependent relativistic width. The vector amplitude introduced an

additional strong phase, inherent of resonance function, and a spin 1 factor, proportional to

cos ✓(s?, sk). The angle ✓ is defined as the helicity angle between the bachelor h± (hb for

simplicity) and the h+h� daughters center of mass reference. For the vector resonance in

the sk channel, the cosine of helicity angle is given by[9]

cos✓(sk, s?) =
(M2

B � sk �M2
hb
)(sk +M2

h+
�M2

h�
) + 2 sk(M2

hb
+M2

h+
� s?)q

�(M2
B, sk,M

2
hb
)
q

�(sk,M2
h+
,M2

h�
)

, (4)

where �(x, y, z) is Kallan function and
p

�(x, y, z) =
h
x�

�p
y +

p
z
�2i h

x�
�p

y �
p
z
�2i

.

The CP asymmetry is obtained by subtracting the squares modulus of the B+ and B�

amplitudes:

�|M2| = |M+|
2 � |M�|2

= [(aV+)
2 � (aV�)

2]|FBW
V |2 cos2 ✓(s?, sk) + [(anr+ )2 � (anr� )2]|FNR|2
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     → cosθ (s⊥)  

+2 cos ✓(s?, sk)|FBW
V |2|FNR|2 ⇥

{(m2
V � sk)) [a

V
+a

nr
+ (cos(�V+ � �nr+ )� aV�a

nr
� cos(�V� � �nr� )]

�mV �V [aV+a
nr
+ (sin(�V+ � �nr+ )� aV�a

nr
� sin(�V� � �nr� )]}. (5)

In a previous paper [3], we explore the di↵erent types of CP asymmetries in eq(5) inte-

grated in the s? Dalitz variable and compared it with the experimental distributions released

by LHCb experiment [7]. Here, we go ahead and look for the distribution on the s? vari-

able around the resonance mass, sk ⇡ m2
V . To perform this analyses, we first integrate the

amplitude in sk 50 MeV around the central value of the vector resonance. We investigate

the behaviour of cos ✓(sk, s?), eq.(4), for values of sk ⇡ m2
V , for V = ⇢(770) and K⇤(892),

and found that it remain stable in the interval of 100 MeV center on m2
V . Therefore, one

can assume that within the snip region of Dalitz plot around the resonance mass, the cos ✓

is a function of only s? even after projecting on sk, and the square amplitudes, eqs.(1) and

(2), become functions of cos✓(s?).

The useful of this procedure is to be able to identify the signature of cos✓ when inspecting

the amplitude distribution in s?. By doing that, one could relate the cos signatures to a type

of CP asymmetry source. Inspecting the subtraction of amplitude square modulus, eq.(5),

one notes that the first two terms are associated to the direct CP asymmetry, created

from BSS mechanism. The former is related to the vector resonance and proportional to

cos2✓(s?), and the letter associated to the scalar NR amplitude. The last two terms in eq.(5)

are proportional to cos✓(s?) and related to the interference between the NR and the vector

resonance V. This type of CP asymmetry has two contributions: one associated to the real

part of the vector amplitude and the other to the imaginary part.

If one represent cos✓(s?) = x, the amplitudes in eqs.(1), (2) and (5) can have their

dependence of cos ✓(s?) emphasized by the parametrization:

Fcos = a(x� c0)
2 + b(x� c0) + c, (6)

where c0 is the zero of cos ✓ extracted from eq.(4) and a, b and c are free parameter.

In principle, if data behaves as simple as described by amplitudes in eqs.(1) and (2), by

fitting eq. (5) with the function Fcos we are able to correlate the existence of the fitting

parameters with a type of CP asymmetry source. The coe�cient a tracks the cos✓2, which

is related to a CP asymmetry from the BSS mechanism on vector amplitude. The coe�cient

9

can parametrize           �|M|2 = a(x� c0)
2 + b(x� c0) + c

for cos ✓ = x� c0

constant

direct vector ACP direct NR ACPinterferenceb ⇒ c ⇒   a ⇒ 

ACP =
a+ � a�

a+ + a�

Applied to LHCb
 runII data ! 
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Table 1: Width difference between the charge conjugate states ∆ΓCP for specific decays
channels. Lifetime, branching ratios and Acp are given as average PDG [15] values with the
statistical and systematic uncertainties added in quadrature.

Decay channel ∆ΓCP (106 s−1)
B± → K±π+π− +0.84± 0.25
B± → K±K+K− −0.68± 0.17
B± → π±π+π− +0.53± 0.13
B± → π±K+K− −0.39± 0.07

which conflicts with the sign expected from U-spin symmetry as already pointed
in Ref. [16], although still compatible in modulus with unity.

Exploring the possible final state interactions between the four charged chan-
nels and imposing the CPT constraint, we showed in [17, 18] that ππ → KK
re-scattering amplitude can explain the flip in the sign for Acp between channels
coupled by the strong interaction. Therefore, returning to the observable ∆ΓCP

in Table 1, we still do not completely understand data. From one side we have a
qualitative agreement of U-spin prediction for the two ratios between channels
with different strangeness, while we observe an apparent contradiction regard-
ing the signs of other two ratios. And, on the other side, from the hadronic
FSI approach, one can understand the relative sign between the two pairs of
channels coupled through ππ ↔ KK interaction.

A complete understanding of the observables in Table 1 is not trivial. We
are dealing with three-body final states and one have to consider the complexity
of their dynamics, with each channel being produced through several different
intermediate states with different interference between them. With this per-
spective, our first task is to understand the signs and the modulus (around
unity) of all the ratios in Table 1. We remind that, to make the situation even
more challenging, the channels have a different branching fraction, e.g. the
B± → K±π+π− is one order of magnitude larger than the B± → π±K+K− .

Our work unifies two general frameworks to study the total CP violation
related to charmless three-body B decays: the CP asymmetry associated with
the U-spin approach and the central role of hadronic final state interactions in
these decays within the constraint of CPT invariance. We go beyond previous
works that used U-spin symmetry [16] without breaking the symmetry by fully
using the transformation π ↔ K allied to final state interactions.

2. Hints of FSI on data

The re-scattering process can be the source of strong phase and absorptive
contributions in multi-body decays through the strong interaction including also
loops, as proposed in several studies [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
We should remind that, in the QCD-only approach, known as BSS model [28],

3
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to the center of the debate. Note that even QCD factorization approaches are
including non-perturbative ”long-distance” contributions to take into account
hadronic strong phases in the CPV problem [3, 4].

An experimental technique to highlight the CP asymmetry directly from
data, the Mirandizing approach [5, 6] applied recently by the LHCb collabora-
tion [1, 7, 8], showed a large variation of positive and negative CP asymmetry
in the Dalitz plot distribution. In particular in Ref. [1] this was shown to be up
to 60% in specific regions in the Dalitz plane. Since the CKM weak phase must
be independent of the position in the phase space, the change of sign must be
directly related to the variation of the strong phase along the phase space.

Another aspect that should be considered in the understanding of CP asym-
metries in B decays is the so-called U-spin symmetry, which is a SU(2) subgroup
of the SU(3) flavor, under which the (d, s) pairs of quarks form a doublet, similar
to (u, d) isospin doublet [9]. The U-spin symmetry approach has been called to
explain the observed CPV in charmless B decays [10], focused on the relation
between decays channels with different strangeness quantum numbers. This ap-
proach succeed to reproduce the observed ratio between the CPV asymmetry
in the B0

s → K−π+ and B0 → K+π− partial widths [2, 10].
Moving to three-body channels, Gronau and collaborators [11, 12] related the

CPV asymmetries of the partial decay widths of the channels B → hhh based
on the U-spin symmetry. They pointed out a relative minus sign between B± →
K±π+π− and B± → π±K+K− , as well as that between B± → K±K+K− and
B± → π±π+π− .

To study the CP asymmetry in three-body B decays we use the difference
between the partial decays widths of the charge conjugated states. Such differ-
ence when summed up over all possible decay channels are constrained by CPT
theorem to vanish [13, 14]. This difference is given by:

∆ΓCP (h
±
1 h

+
2 h

−
3 ) = Γ(B− → h−

1 h
+
2 h

−
3 )− Γ(B+ → h+

1 h
−
2 h

+
3 ) . (1)

We can express ∆ΓCP from the experimental integrated Acp results through the
equation:

∆ΓCP (h
±
1 h

+
2 h

−
3 ) = ACP (B

± → h±
1 h

+
2 h

−
3 )B(B+ → h+

1 h
+
2 h

−
3 )/τ(B

+). (2)

Where we used the experimental data quoted in [15] for the branching ratios B,
lifetime τ(B+) and ACP . The resulting ∆ΓCP values are given in Table 1.

The ratios between channels with different strangeness are:

∆ΓCP (π±K+K−)

∆ΓCP (K±π+π−)
= −0.46± 0.16 and

∆ΓCP (π±π+π−)

∆ΓCP (K±K+K−)
= −0.77± 0.27 ,

(3)
both compatible with −1 within errors and qualitatively consistent with U-spin
symmetry as predicted by [12]. Furthermore, if we consider that the U-spin
symmetry is applied only to weak vertex, it should be valid for the other pair of
channels with different strangeness. However, from Table 1, we get the ratios:

∆ΓCP (K±π+π−)

∆ΓCP (π±π+π−)
= 1.59± 0.62 and

∆ΓCP (K±K+K−)

∆ΓCP (π±K+K−)
= 1.77± 0.55, (4)
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B− → π−π+π− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B− → π−K+K− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B− → K−K+K− dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B− → π−π+π− and
B− → π−K+K− decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W− boson that results in a π− and a R0. For the
B− → π−π+π− (B− → π−K+K−) decay, R0 represents any neutral resonance that
decays in π+π− (K+K−). In the penguin diagram, the b-quark decay is due to a
virtual W− boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B− → K−K+K− and
B− → K−π+π− decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W− boson emission resulting in K− and R0. For the B− → K−K+K−
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Figure 1: All the four B → hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ∆ΓCP (f) given by Eq. (1), comes from the inter-
ference terms in B → f decays with different weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

∆ΓCP (K
±π+π−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us1C∗

s1 + Ūs1 C̄∗
s1 ], (13)

∆ΓCP (π
±K+K−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud2C∗

d2
+ Ūd2 C̄∗

d2
], (14)

∆ΓCP (π
±π+π−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud3C∗

d3
+ Ūd3 C̄∗

d3
], (15)

∆ΓCP (K
±K+K−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us4C∗

s4 + Ūs4 C̄∗
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d ↔ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ∗
ubVusVcbV

∗
cs) = − Im(V ∗

ubVudVcbV
∗
cd) , (18)

it can be shown that [11, 12]:

∆ΓCP (K
±π+π−) = −∆ΓCP (π

±K+K−) ,

∆ΓCP (π
±π+π−) = −∆ΓCP (K

±K+K−) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ππ ↔ KK can be a CPV mechanism
in B → hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only

6

only U-spin 
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of the SU(3) flavor, under which the (d, s) pairs of quarks form a doublet, similar
to (u, d) isospin doublet [9]. The U-spin symmetry approach has been called to
explain the observed CPV in charmless B decays [10], focused on the relation
between decays channels with different strangeness quantum numbers. This ap-
proach succeed to reproduce the observed ratio between the CPV asymmetry
in the B0

s → K−π+ and B0 → K+π− partial widths [2, 10].
Moving to three-body channels, Gronau and collaborators [11, 12] related the

CPV asymmetries of the partial decay widths of the channels B → hhh based
on the U-spin symmetry. They pointed out a relative minus sign between B± →
K±π+π− and B± → π±K+K− , as well as that between B± → K±K+K− and
B± → π±π+π− .

To study the CP asymmetry in three-body B decays we use the difference
between the partial decays widths of the charge conjugated states. Such differ-
ence when summed up over all possible decay channels are constrained by CPT
theorem to vanish [13, 14]. This difference is given by:
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Where we used the experimental data quoted in [15] for the branching ratios B,
lifetime τ(B+) and ACP . The resulting ∆ΓCP values are given in Table 1.

The ratios between channels with different strangeness are:

∆ΓCP (π±K+K−)

∆ΓCP (K±π+π−)
= −0.46± 0.16 and

∆ΓCP (π±π+π−)
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Table 1: Width difference between the charge conjugate states ∆ΓCP for specific decays
channels. Lifetime, branching ratios and Acp are given as average PDG [15] values with the
statistical and systematic uncertainties added in quadrature.

Decay channel ∆ΓCP (106 s−1)
B± → K±π+π− +0.84± 0.25
B± → K±K+K− −0.68± 0.17
B± → π±π+π− +0.53± 0.13
B± → π±K+K− −0.39± 0.07

which conflicts with the sign expected from U-spin symmetry as already pointed
in Ref. [16], although still compatible in modulus with unity.

Exploring the possible final state interactions between the four charged chan-
nels and imposing the CPT constraint, we showed in [17, 18] that ππ → KK
re-scattering amplitude can explain the flip in the sign for Acp between channels
coupled by the strong interaction. Therefore, returning to the observable ∆ΓCP

in Table 1, we still do not completely understand data. From one side we have a
qualitative agreement of U-spin prediction for the two ratios between channels
with different strangeness, while we observe an apparent contradiction regard-
ing the signs of other two ratios. And, on the other side, from the hadronic
FSI approach, one can understand the relative sign between the two pairs of
channels coupled through ππ ↔ KK interaction.

A complete understanding of the observables in Table 1 is not trivial. We
are dealing with three-body final states and one have to consider the complexity
of their dynamics, with each channel being produced through several different
intermediate states with different interference between them. With this per-
spective, our first task is to understand the signs and the modulus (around
unity) of all the ratios in Table 1. We remind that, to make the situation even
more challenging, the channels have a different branching fraction, e.g. the
B± → K±π+π− is one order of magnitude larger than the B± → π±K+K− .

Our work unifies two general frameworks to study the total CP violation
related to charmless three-body B decays: the CP asymmetry associated with
the U-spin approach and the central role of hadronic final state interactions in
these decays within the constraint of CPT invariance. We go beyond previous
works that used U-spin symmetry [16] without breaking the symmetry by fully
using the transformation π ↔ K allied to final state interactions.

2. Hints of FSI on data

The re-scattering process can be the source of strong phase and absorptive
contributions in multi-body decays through the strong interaction including also
loops, as proposed in several studies [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
We should remind that, in the QCD-only approach, known as BSS model [28],
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to the center of the debate. Note that even QCD factorization approaches are
including non-perturbative ”long-distance” contributions to take into account
hadronic strong phases in the CPV problem [3, 4].

An experimental technique to highlight the CP asymmetry directly from
data, the Mirandizing approach [5, 6] applied recently by the LHCb collabora-
tion [1, 7, 8], showed a large variation of positive and negative CP asymmetry
in the Dalitz plot distribution. In particular in Ref. [1] this was shown to be up
to 60% in specific regions in the Dalitz plane. Since the CKM weak phase must
be independent of the position in the phase space, the change of sign must be
directly related to the variation of the strong phase along the phase space.

Another aspect that should be considered in the understanding of CP asym-
metries in B decays is the so-called U-spin symmetry, which is a SU(2) subgroup
of the SU(3) flavor, under which the (d, s) pairs of quarks form a doublet, similar
to (u, d) isospin doublet [9]. The U-spin symmetry approach has been called to
explain the observed CPV in charmless B decays [10], focused on the relation
between decays channels with different strangeness quantum numbers. This ap-
proach succeed to reproduce the observed ratio between the CPV asymmetry
in the B0

s → K−π+ and B0 → K+π− partial widths [2, 10].
Moving to three-body channels, Gronau and collaborators [11, 12] related the

CPV asymmetries of the partial decay widths of the channels B → hhh based
on the U-spin symmetry. They pointed out a relative minus sign between B± →
K±π+π− and B± → π±K+K− , as well as that between B± → K±K+K− and
B± → π±π+π− .

To study the CP asymmetry in three-body B decays we use the difference
between the partial decays widths of the charge conjugated states. Such differ-
ence when summed up over all possible decay channels are constrained by CPT
theorem to vanish [13, 14]. This difference is given by:
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the imaginary part from the strong interaction appears in the “penguin” dia-
gram b → s (or d), plus uū or dd̄ produced by the presence of an intermediary
gluon. However, this occurs when it has transferred momentum twice the charm
quark mass present in the “penguin” loop. While in models including hadronic
rescattering, the strong phase can also be originated from process characterized
by long distance physics.

Two-body scattering data [29, 30] was measured both for ππ → ππ and
for ππ → KK processes. The data suggest a strong coupling between these
two channels in the S-wave. On the theory side, there are several parametriza-
tions and theoretical models that describe data well up to a certain energy (1.9
GeV) [31, 32, 27] (and references included). In particular, the one from [32] was
used to introduce the rescattering ππ → KK amplitude in B± → π±π+π− and
B± → π±K+K− analysis at LHCb [33, 34, 35].

To stress the relevance of FSI to the CPV observed in data, we show in
Table 2 the CP asymmetry from the rescattering ππ → KK region of the
Dalitz plane (Apar

CP ) - from 1 to 1.5 GeV - along with the total ACP for the
charmless charged three-body B decays: B± → K±π+π− , B± → K±K+K− ,
B± → π±K+K− , and B± → π±π+π− .

Table 2: Total charge asymmetries Aall
CP and partial ones APar

CP in the re-scattering region
ππ → KK from 1.0 up to 1.5 GeV/c2. Uncertainties are only statistical [1].

Decay Aall
CP Apar

CP

B± → K±π+π− +0.025± 0.004 +0.123± 0.012
B± → K±K+K− −0.036± 0.004 −0.209± 0.011
B± → π±π+π− +0.058± 0.008 +0.173± 0.021
B± → π±K+K− −0.123± 0.017 −0.326± 0.028

The ππ → KK rescattering as a source of CPV were investigated in a re-
cent amplitude analysis performed by the LHCb collaboration [33, 34, 35], as we
mentioned above. The experimental result on the B± → π±K+K− decay [35]
shows a strong CP asymmetry associated with hadronic re-scattering ampli-
tude ππ → KK. The observed Acp = −66.4 ± 3.8 ± 1.9% represents the
most significant CPV observed in a single amplitude. It has a fit fraction of
(16.4± 0.8± 1.0)% which results in a (−10.9± 0.8± 0.7)% contribution to the
integrated CP asymmetry. It corresponds to almost the total integrated asym-
metry (Acp(B± → π±K+K− )= −0.123± 0.017). We can do the same exercise
for the B± → π±π+π− decay with the recent amplitude analysis published by
LHCb [34], where the contributions from σ and f2(1270) represent roughly all
integrated asymmetry observed in the B± → π±π+π− channel.

3. U-spin approach for B → hhh decays

The B → hhh, for h = π,K, amplitude can be generically represented by
the Feynman diagrams in Figure 1, where we omit the gluon lines and the other
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B�
! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B�
! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B�
! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B�
! ���+�� and

B�
! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-

pens through the emission of a W� boson that results in a �� and a R0. For the
B�

! ���+�� (B�
! ��K+K�) decay, R0 represents any neutral resonance that

decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B�
! K�K+K� and

B�
! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs

through a virtual W� boson emission resulting in K� and R0. For the B�
! K�K+K�
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Figure 1: All the four B ! hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ��CP (f) given by Eq. (1), comes from the inter-
ference terms in B ! f decays with di↵erent weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

��CP (K±⇡+⇡�) = 2 Im[V ⇤
ubVusVcbV

⇤
cs] Im[Us1C

⇤
s1 + Ūs1 C̄

⇤
s1 ], (13)

��CP (⇡±K+K�) = 2 Im[V ⇤
ubVudVcbV

⇤
cd] Im[Ud2C

⇤
d2

+ Ūd2 C̄
⇤
d2

], (14)

��CP (⇡±⇡+⇡�) = 2 Im[V ⇤
ubVudVcbV

⇤
cd] Im[Ud3C

⇤
d3

+ Ūd3 C̄
⇤
d3

], (15)

��CP (K±K+K�) = 2 Im[V ⇤
ubVusVcbV

⇤
cs] Im[Us4C

⇤
s4 + Ūs4 C̄

⇤
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d $ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ⇤
ubVusVcbV

⇤
cs) = � Im(V ⇤

ubVudVcbV
⇤
cd) , (18)

it can be shown that [11, 12]:

��CP (K
±⇡+⇡�) = ���CP (⇡

±K+K�) ,

��CP (⇡
±⇡+⇡�) = ���CP (K

±K+K�) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ⇡⇡ $ KK can be a CPV mechanism
in B ! hhh [17, 18]. However, the question is how to connect the FSI between
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B− → π−π+π− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B− → π−K+K− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B− → K−K+K− dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B− → π−π+π− and
B− → π−K+K− decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W− boson that results in a π− and a R0. For the
B− → π−π+π− (B− → π−K+K−) decay, R0 represents any neutral resonance that
decays in π+π− (K+K−). In the penguin diagram, the b-quark decay is due to a
virtual W− boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B− → K−K+K− and
B− → K−π+π− decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W− boson emission resulting in K− and R0. For the B− → K−K+K−
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Figure 1: All the four B → hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ∆ΓCP (f) given by Eq. (1), comes from the inter-
ference terms in B → f decays with different weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

∆ΓCP (K
±π+π−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us1C∗

s1 + Ūs1 C̄∗
s1 ], (13)

∆ΓCP (π
±K+K−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud2C∗

d2
+ Ūd2 C̄∗

d2
], (14)

∆ΓCP (π
±π+π−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud3C∗

d3
+ Ūd3 C̄∗

d3
], (15)

∆ΓCP (K
±K+K−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us4C∗

s4 + Ūs4 C̄∗
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d ↔ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ∗
ubVusVcbV

∗
cs) = − Im(V ∗

ubVudVcbV
∗
cd) , (18)

it can be shown that [11, 12]:

∆ΓCP (K
±π+π−) = −∆ΓCP (π

±K+K−) ,

∆ΓCP (π
±π+π−) = −∆ΓCP (K

±K+K−) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ππ ↔ KK can be a CPV mechanism
in B → hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
different quark flavor transitions (Figure 1), the amplitude of B → f decays,
for f = hhh, are given by:

A(Bu → fq) = 〈fq
out|Hw|Bu〉 = VubV

∗
uq〈f

q
out|Uq|Bu〉+ VcbV

∗
cq〈f

q
out|Cq|Bu〉 , (5)

and for the decay of the charge conjugate state:

A(B̄u → f̄q) = 〈f̄q
out|Hw|B̄u〉 = V ∗

ubVuq〈f̄q
out|Ūq|B̄u〉+ V ∗

cbVcq〈f̄q
out|C̄q|B̄u〉 , (6)

where q = s or d, namely channels with ∆S = 1 or 0, respectively. The effective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

out〉 and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq〉 are hadronic-free states, while |fq

out(in)〉
includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with ∆S = 0, B± → π±π+π− and
B± → π±K+K− , correspond to q = d in Eqs. (5) and (6). In the case of
∆S = 1, the decays amplitudes for B± → K±π+π− and B± → K±K+K− are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of π ↔ K, which
in our notation is written as:

〈fs
out|Us|Bu〉 = 〈fd

out|Ud|Bu〉 and 〈fs
out|Cs|Bu〉 = 〈fd

out|Cd|Bu〉 . (7)

To further simplify the notation we define:

Ufq = 〈fq
out|U q|Bu〉 and Cfq = 〈fq

out|Cq|Bu〉 . (8)

Note that we have assumed the U-spin symmetry for channels where d ↔ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B → hhh decays are written as:

A(B+ → K+π+π−) = V ∗
ubVus Us1 + V ∗

cbVcs Cs1 , (9)

A(B+ → π+K+K−) = V ∗
ubVud Ud2 + V ∗

cbVcd Cd2 , (10)

A(B+ → π+π+π−) = V ∗
ubVud Ud3 + V ∗

cbVcd Cd3 , (11)

A(B+ → K+K+K−) = V ∗
ubVus Us4 + V ∗

cbVcs Cs4 , (12)
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relate channels that have different ∆S. Both are constrained by CPT theorem
and all together should give a consistent description that allows us to understand
the observable asymmetries in Table 1.

First, to connect FSI with the observed CPV in B decays, we have to show
that the relations given by Eqs. (13) – (16) are consistent with the FSI formalism
previously developed. To define our notation and the FSI framework we follow
the discussion presented in [17] for implementing the CPT constraint in B meson
decays, as developed in Refs. [13, 36].

A hadron state |h〉 transforms under CPT as CPT |h〉 = χ〈h̄|, where h̄ is the
charge conjugate state, and χ is a phase. The weak and strong Hamiltonians
are invariant under CPT, and therefore it is valid that

(CPT )−1 Hw CPT = Hw and (CPT )−1 Hs CPT = Hs ,

respectively. The requirement of CPT invariance for the weak and strong Hamil-
tonians imply that the sum of the partial decay widths of the hadron decays
and the correspondent sum for the charge conjugate ones should be identical:

∑

fq, q=d,s

|〈fq
out|Hw|h〉|2 =

∑

fq, q=d,s

|〈f̄q
out|Hw|h̄〉|2 . (20)

In addition, taking into account the CP invariance of the matrix elements of
U q and Cq between the strongly interacting states, independently of q we have
that:

Ufq = Ūfq and Cfq = C̄fq . (21)

The only change due to CP transformation is the sign multiplying the weak
phase. The CP asymmetry is given by:

∆ΓCP (f
q) = |A(Bu → fq)|2 − |A(B̄u → f̄q)|2

= 4 Im[V ∗
ubVuqVcbV

∗
cq] Im

[
UfqC∗

fq

]
, (22)

which will be our starting point for the analysis of the effect of the final state
interaction. Recalling that the S-matrix is unitary by definition and its elements
are an overlap between in and out states, Eq. (22) can be rewritten as [37, 17]
(see also Appendix A):

∆ΓCP (qi) = 4 Im[V ∗
ubVuqVcbV

∗
cq]

∑

j,k

Im
[
Sj,iS

∗
k,i U∗

qjCqk
]
, (23)

which is our main formula, exposing explicitly the effect of the FSI and the
CP-violating phase for the decay channels with ∆S = 1 and ∆S = 0 carrying
different net strangeness, and therefore not coupled by the strong interaction.

The CP-violating phase enters linearly at the lowest order in the hadron de-
cay amplitude. If we impose CPT invariance of the strong sector, independently
of the weak Hamiltonian, using the steps given in Refs. [17, 37] and summarized
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B− → π−π+π− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B− → π−K+K− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B− → K−K+K− dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B− → π−π+π− and
B− → π−K+K− decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W− boson that results in a π− and a R0. For the
B− → π−π+π− (B− → π−K+K−) decay, R0 represents any neutral resonance that
decays in π+π− (K+K−). In the penguin diagram, the b-quark decay is due to a
virtual W− boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B− → K−K+K− and
B− → K−π+π− decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W− boson emission resulting in K− and R0. For the B− → K−K+K−
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Figure 1: All the four B → hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ∆ΓCP (f) given by Eq. (1), comes from the inter-
ference terms in B → f decays with different weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

∆ΓCP (K
±π+π−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us1C∗

s1 + Ūs1 C̄∗
s1 ], (13)

∆ΓCP (π
±K+K−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud2C∗

d2
+ Ūd2 C̄∗

d2
], (14)

∆ΓCP (π
±π+π−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud3C∗

d3
+ Ūd3 C̄∗

d3
], (15)

∆ΓCP (K
±K+K−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us4C∗

s4 + Ūs4 C̄∗
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d ↔ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ∗
ubVusVcbV

∗
cs) = − Im(V ∗

ubVudVcbV
∗
cd) , (18)

it can be shown that [11, 12]:

∆ΓCP (K
±π+π−) = −∆ΓCP (π

±K+K−) ,

∆ΓCP (π
±π+π−) = −∆ΓCP (K

±K+K−) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ππ ↔ KK can be a CPV mechanism
in B → hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
different quark flavor transitions (Figure 1), the amplitude of B → f decays,
for f = hhh, are given by:

A(Bu → fq) = 〈fq
out|Hw|Bu〉 = VubV

∗
uq〈f

q
out|Uq|Bu〉+ VcbV

∗
cq〈f

q
out|Cq|Bu〉 , (5)

and for the decay of the charge conjugate state:

A(B̄u → f̄q) = 〈f̄q
out|Hw|B̄u〉 = V ∗

ubVuq〈f̄q
out|Ūq|B̄u〉+ V ∗

cbVcq〈f̄q
out|C̄q|B̄u〉 , (6)

where q = s or d, namely channels with ∆S = 1 or 0, respectively. The effective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

out〉 and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq〉 are hadronic-free states, while |fq

out(in)〉
includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with ∆S = 0, B± → π±π+π− and
B± → π±K+K− , correspond to q = d in Eqs. (5) and (6). In the case of
∆S = 1, the decays amplitudes for B± → K±π+π− and B± → K±K+K− are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of π ↔ K, which
in our notation is written as:

〈fs
out|Us|Bu〉 = 〈fd

out|Ud|Bu〉 and 〈fs
out|Cs|Bu〉 = 〈fd

out|Cd|Bu〉 . (7)

To further simplify the notation we define:

Ufq = 〈fq
out|U q|Bu〉 and Cfq = 〈fq

out|Cq|Bu〉 . (8)

Note that we have assumed the U-spin symmetry for channels where d ↔ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B → hhh decays are written as:

A(B+ → K+π+π−) = V ∗
ubVus Us1 + V ∗

cbVcs Cs1 , (9)

A(B+ → π+K+K−) = V ∗
ubVud Ud2 + V ∗

cbVcd Cd2 , (10)

A(B+ → π+π+π−) = V ∗
ubVud Ud3 + V ∗

cbVcd Cd3 , (11)

A(B+ → K+K+K−) = V ∗
ubVus Us4 + V ∗

cbVcs Cs4 , (12)
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relate channels that have different ∆S. Both are constrained by CPT theorem
and all together should give a consistent description that allows us to understand
the observable asymmetries in Table 1.

First, to connect FSI with the observed CPV in B decays, we have to show
that the relations given by Eqs. (13) – (16) are consistent with the FSI formalism
previously developed. To define our notation and the FSI framework we follow
the discussion presented in [17] for implementing the CPT constraint in B meson
decays, as developed in Refs. [13, 36].

A hadron state |h〉 transforms under CPT as CPT |h〉 = χ〈h̄|, where h̄ is the
charge conjugate state, and χ is a phase. The weak and strong Hamiltonians
are invariant under CPT, and therefore it is valid that

(CPT )−1 Hw CPT = Hw and (CPT )−1 Hs CPT = Hs ,

respectively. The requirement of CPT invariance for the weak and strong Hamil-
tonians imply that the sum of the partial decay widths of the hadron decays
and the correspondent sum for the charge conjugate ones should be identical:

∑

fq, q=d,s

|〈fq
out|Hw|h〉|2 =

∑

fq, q=d,s

|〈f̄q
out|Hw|h̄〉|2 . (20)

In addition, taking into account the CP invariance of the matrix elements of
U q and Cq between the strongly interacting states, independently of q we have
that:

Ufq = Ūfq and Cfq = C̄fq . (21)

The only change due to CP transformation is the sign multiplying the weak
phase. The CP asymmetry is given by:

∆ΓCP (f
q) = |A(Bu → fq)|2 − |A(B̄u → f̄q)|2

= 4 Im[V ∗
ubVuqVcbV

∗
cq] Im

[
UfqC∗

fq

]
, (22)

which will be our starting point for the analysis of the effect of the final state
interaction. Recalling that the S-matrix is unitary by definition and its elements
are an overlap between in and out states, Eq. (22) can be rewritten as [37, 17]
(see also Appendix A):

∆ΓCP (qi) = 4 Im[V ∗
ubVuqVcbV

∗
cq]

∑

j,k

Im
[
Sj,iS

∗
k,i U∗

qjCqk
]
, (23)

which is our main formula, exposing explicitly the effect of the FSI and the
CP-violating phase for the decay channels with ∆S = 1 and ∆S = 0 carrying
different net strangeness, and therefore not coupled by the strong interaction.

The CP-violating phase enters linearly at the lowest order in the hadron de-
cay amplitude. If we impose CPT invariance of the strong sector, independently
of the weak Hamiltonian, using the steps given in Refs. [17, 37] and summarized

7

q= d or s

S-matrix unitarity and CPT invariance of the weak and strong Hamiltonians 
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B− → π−π+π− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B− → π−K+K− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B− → K−K+K− dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B− → π−π+π− and
B− → π−K+K− decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W− boson that results in a π− and a R0. For the
B− → π−π+π− (B− → π−K+K−) decay, R0 represents any neutral resonance that
decays in π+π− (K+K−). In the penguin diagram, the b-quark decay is due to a
virtual W− boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B− → K−K+K− and
B− → K−π+π− decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W− boson emission resulting in K− and R0. For the B− → K−K+K−

q
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Figure 1: All the four B → hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ∆ΓCP (f) given by Eq. (1), comes from the inter-
ference terms in B → f decays with different weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

∆ΓCP (K
±π+π−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us1C∗

s1 + Ūs1 C̄∗
s1 ], (13)

∆ΓCP (π
±K+K−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud2C∗

d2
+ Ūd2 C̄∗

d2
], (14)

∆ΓCP (π
±π+π−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud3C∗

d3
+ Ūd3 C̄∗

d3
], (15)

∆ΓCP (K
±K+K−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us4C∗

s4 + Ūs4 C̄∗
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d ↔ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ∗
ubVusVcbV

∗
cs) = − Im(V ∗

ubVudVcbV
∗
cd) , (18)

it can be shown that [11, 12]:

∆ΓCP (K
±π+π−) = −∆ΓCP (π

±K+K−) ,

∆ΓCP (π
±π+π−) = −∆ΓCP (K

±K+K−) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ππ ↔ KK can be a CPV mechanism
in B → hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only

6

quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
different quark flavor transitions (Figure 1), the amplitude of B → f decays,
for f = hhh, are given by:

A(Bu → fq) = 〈fq
out|Hw|Bu〉 = VubV

∗
uq〈f

q
out|Uq|Bu〉+ VcbV

∗
cq〈f

q
out|Cq|Bu〉 , (5)

and for the decay of the charge conjugate state:

A(B̄u → f̄q) = 〈f̄q
out|Hw|B̄u〉 = V ∗

ubVuq〈f̄q
out|Ūq|B̄u〉+ V ∗

cbVcq〈f̄q
out|C̄q|B̄u〉 , (6)

where q = s or d, namely channels with ∆S = 1 or 0, respectively. The effective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

out〉 and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq〉 are hadronic-free states, while |fq

out(in)〉
includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with ∆S = 0, B± → π±π+π− and
B± → π±K+K− , correspond to q = d in Eqs. (5) and (6). In the case of
∆S = 1, the decays amplitudes for B± → K±π+π− and B± → K±K+K− are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of π ↔ K, which
in our notation is written as:

〈fs
out|Us|Bu〉 = 〈fd

out|Ud|Bu〉 and 〈fs
out|Cs|Bu〉 = 〈fd

out|Cd|Bu〉 . (7)

To further simplify the notation we define:

Ufq = 〈fq
out|U q|Bu〉 and Cfq = 〈fq

out|Cq|Bu〉 . (8)

Note that we have assumed the U-spin symmetry for channels where d ↔ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B → hhh decays are written as:

A(B+ → K+π+π−) = V ∗
ubVus Us1 + V ∗

cbVcs Cs1 , (9)

A(B+ → π+K+K−) = V ∗
ubVud Ud2 + V ∗

cbVcd Cd2 , (10)

A(B+ → π+π+π−) = V ∗
ubVud Ud3 + V ∗

cbVcd Cd3 , (11)

A(B+ → K+K+K−) = V ∗
ubVus Us4 + V ∗

cbVcs Cs4 , (12)
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relate channels that have different ∆S. Both are constrained by CPT theorem
and all together should give a consistent description that allows us to understand
the observable asymmetries in Table 1.

First, to connect FSI with the observed CPV in B decays, we have to show
that the relations given by Eqs. (13) – (16) are consistent with the FSI formalism
previously developed. To define our notation and the FSI framework we follow
the discussion presented in [17] for implementing the CPT constraint in B meson
decays, as developed in Refs. [13, 36].

A hadron state |h〉 transforms under CPT as CPT |h〉 = χ〈h̄|, where h̄ is the
charge conjugate state, and χ is a phase. The weak and strong Hamiltonians
are invariant under CPT, and therefore it is valid that

(CPT )−1 Hw CPT = Hw and (CPT )−1 Hs CPT = Hs ,

respectively. The requirement of CPT invariance for the weak and strong Hamil-
tonians imply that the sum of the partial decay widths of the hadron decays
and the correspondent sum for the charge conjugate ones should be identical:

∑

fq, q=d,s

|〈fq
out|Hw|h〉|2 =

∑

fq, q=d,s

|〈f̄q
out|Hw|h̄〉|2 . (20)

In addition, taking into account the CP invariance of the matrix elements of
U q and Cq between the strongly interacting states, independently of q we have
that:

Ufq = Ūfq and Cfq = C̄fq . (21)

The only change due to CP transformation is the sign multiplying the weak
phase. The CP asymmetry is given by:

∆ΓCP (f
q) = |A(Bu → fq)|2 − |A(B̄u → f̄q)|2

= 4 Im[V ∗
ubVuqVcbV

∗
cq] Im

[
UfqC∗

fq

]
, (22)

which will be our starting point for the analysis of the effect of the final state
interaction. Recalling that the S-matrix is unitary by definition and its elements
are an overlap between in and out states, Eq. (22) can be rewritten as [37, 17]
(see also Appendix A):

∆ΓCP (qi) = 4 Im[V ∗
ubVuqVcbV

∗
cq]

∑

j,k

Im
[
Sj,iS

∗
k,i U∗

qjCqk
]
, (23)

which is our main formula, exposing explicitly the effect of the FSI and the
CP-violating phase for the decay channels with ∆S = 1 and ∆S = 0 carrying
different net strangeness, and therefore not coupled by the strong interaction.

The CP-violating phase enters linearly at the lowest order in the hadron de-
cay amplitude. If we impose CPT invariance of the strong sector, independently
of the weak Hamiltonian, using the steps given in Refs. [17, 37] and summarized

7

q= d or s

S-matrix unitarity and CPT invariance of the weak and strong Hamiltonians 

11
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I.I. Bigi, A.I. Sanda, CP Violation, second ed., Cambridge University Press, 2009. 
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1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B− → π−π+π− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B− → π−K+K− dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B− → K−K+K− dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B− → π−π+π− and
B− → π−K+K− decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W− boson that results in a π− and a R0. For the
B− → π−π+π− (B− → π−K+K−) decay, R0 represents any neutral resonance that
decays in π+π− (K+K−). In the penguin diagram, the b-quark decay is due to a
virtual W− boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B− → K−K+K− and
B− → K−π+π− decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W− boson emission resulting in K− and R0. For the B− → K−K+K−

q
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Figure 1: All the four B → hhh channels can have contribution from the tree (left) and
penguin (right) diagrams. Note that we omit the gluon lines from the penguin. The flavour of
quark q can be d or s, and the others quarks needed to the final hadronic state are produced
from the vacuum.

where we have the channels fs = (s1, s4) and fd = (d2, d3). The CP asym-
metries in the partial widths, ∆ΓCP (f) given by Eq. (1), comes from the inter-
ference terms in B → f decays with different weak and strong phases, and by
considering the decay amplitudes (9)-(12), one arrives at:

∆ΓCP (K
±π+π−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us1C∗

s1 + Ūs1 C̄∗
s1 ], (13)

∆ΓCP (π
±K+K−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud2C∗

d2
+ Ūd2 C̄∗

d2
], (14)

∆ΓCP (π
±π+π−) = 2 Im[V ∗

ubVudVcbV
∗
cd] Im[Ud3C∗

d3
+ Ūd3 C̄∗

d3
], (15)

∆ΓCP (K
±K+K−) = 2 Im[V ∗

ubVusVcbV
∗
cs] Im[Us4C∗

s4 + Ūs4 C̄∗
s4 ] . (16)

Imposing U-spin symmetry, expressed by Eq. (7), one needs to make d ↔ s in
all mesons in the decay channel, namely:

Us1 = Ud2 , Cs1 = Cd2 , Us3 = Ud4 , Cs3 = Cs4 , (17)

and considering that the unitarity of the CKM matrix leads to [11, 12]:

Im(V ∗
ubVusVcbV

∗
cs) = − Im(V ∗

ubVudVcbV
∗
cd) , (18)

it can be shown that [11, 12]:

∆ΓCP (K
±π+π−) = −∆ΓCP (π

±K+K−) ,

∆ΓCP (π
±π+π−) = −∆ΓCP (K

±K+K−) . (19)

These relations are qualitatively consistent with the experimental results within
error given in (3). Still, it is remaining the relation between the other observed
width asymmetries given in (4) and not only those related to the U-spin sym-
metry. For that purpose the CPT constraint in channels coupled by the strong
interaction is necessary.

4. FSI, U-spin symmetry and CPT

As we discussed before, re-scattering ππ ↔ KK can be a CPV mechanism
in B → hhh [17, 18]. However, the question is how to connect the FSI between
channels with the same quantum numbers with U-spin symmetry, that can only
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quarks produced from the sea to complete the final state. Implementing U-
spin approach inspired in [11] and considering the two main topologies with
different quark flavor transitions (Figure 1), the amplitude of B → f decays,
for f = hhh, are given by:

A(Bu → fq) = 〈fq
out|Hw|Bu〉 = VubV

∗
uq〈f

q
out|Uq|Bu〉+ VcbV

∗
cq〈f

q
out|Cq|Bu〉 , (5)

and for the decay of the charge conjugate state:

A(B̄u → f̄q) = 〈f̄q
out|Hw|B̄u〉 = V ∗

ubVuq〈f̄q
out|Ūq|B̄u〉+ V ∗

cbVcq〈f̄q
out|C̄q|B̄u〉 , (6)

where q = s or d, namely channels with ∆S = 1 or 0, respectively. The effective
Hamiltonian for the decay is written as Hw, and the decay amplitude is sepa-
rated with the matrix elements of operators Uq and Cq, associated respectively
with the tree (left panel) and “penguin” (right panel) diagrams of Figure 1, and
within our assumption do not contain the strong phase. The strong phase in the
decay amplitudes, Eq. (5) and (6), comes from |fq

out〉 and its charge conjugate
state, which are the scattering eigenstates of the strong Hamiltonian. To com-
plement, in our notation, the states |fq〉 are hadronic-free states, while |fq

out(in)〉
includes the distortion due to the hadronic FSI. In principle, such separation is
possible in general scattering theory, and it will be necessary when analyzing
the Charge-Parity-Time reversal (CPT) symmetry constraint.

The B decay amplitudes for channels with ∆S = 0, B± → π±π+π− and
B± → π±K+K− , correspond to q = d in Eqs. (5) and (6). In the case of
∆S = 1, the decays amplitudes for B± → K±π+π− and B± → K±K+K− are
associated to q = s.

To avoid the conflict with the signs of the ratios in Eq. (4), we restrict the use
of the U-spin symmetry to channels where the light flavor quarks are exchanged
in all hadrons in the final decay state, i.e., with the exchange of π ↔ K, which
in our notation is written as:

〈fs
out|Us|Bu〉 = 〈fd

out|Ud|Bu〉 and 〈fs
out|Cs|Bu〉 = 〈fd

out|Cd|Bu〉 . (7)

To further simplify the notation we define:

Ufq = 〈fq
out|U q|Bu〉 and Cfq = 〈fq

out|Cq|Bu〉 . (8)

Note that we have assumed the U-spin symmetry for channels where d ↔ s in all
hadrons in the final state, excluding the cases where only the quarks produced
in the weak vertices are exchanged.

Considering the two main quark flavor topologies as in Figure 1, the ampli-
tudes corresponding to the charmess B → hhh decays are written as:

A(B+ → K+π+π−) = V ∗
ubVus Us1 + V ∗

cbVcs Cs1 , (9)

A(B+ → π+K+K−) = V ∗
ubVud Ud2 + V ∗

cbVcd Cd2 , (10)

A(B+ → π+π+π−) = V ∗
ubVud Ud3 + V ∗

cbVcd Cd3 , (11)

A(B+ → K+K+K−) = V ∗
ubVus Us4 + V ∗

cbVcs Cs4 , (12)
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relate channels that have different ∆S. Both are constrained by CPT theorem
and all together should give a consistent description that allows us to understand
the observable asymmetries in Table 1.

First, to connect FSI with the observed CPV in B decays, we have to show
that the relations given by Eqs. (13) – (16) are consistent with the FSI formalism
previously developed. To define our notation and the FSI framework we follow
the discussion presented in [17] for implementing the CPT constraint in B meson
decays, as developed in Refs. [13, 36].

A hadron state |h〉 transforms under CPT as CPT |h〉 = χ〈h̄|, where h̄ is the
charge conjugate state, and χ is a phase. The weak and strong Hamiltonians
are invariant under CPT, and therefore it is valid that

(CPT )−1 Hw CPT = Hw and (CPT )−1 Hs CPT = Hs ,

respectively. The requirement of CPT invariance for the weak and strong Hamil-
tonians imply that the sum of the partial decay widths of the hadron decays
and the correspondent sum for the charge conjugate ones should be identical:

∑

fq, q=d,s

|〈fq
out|Hw|h〉|2 =

∑

fq, q=d,s

|〈f̄q
out|Hw|h̄〉|2 . (20)

In addition, taking into account the CP invariance of the matrix elements of
U q and Cq between the strongly interacting states, independently of q we have
that:

Ufq = Ūfq and Cfq = C̄fq . (21)

The only change due to CP transformation is the sign multiplying the weak
phase. The CP asymmetry is given by:

∆ΓCP (f
q) = |A(Bu → fq)|2 − |A(B̄u → f̄q)|2

= 4 Im[V ∗
ubVuqVcbV

∗
cq] Im

[
UfqC∗

fq

]
, (22)

which will be our starting point for the analysis of the effect of the final state
interaction. Recalling that the S-matrix is unitary by definition and its elements
are an overlap between in and out states, Eq. (22) can be rewritten as [37, 17]
(see also Appendix A):

∆ΓCP (qi) = 4 Im[V ∗
ubVuqVcbV

∗
cq]

∑

j,k

Im
[
Sj,iS

∗
k,i U∗

qjCqk
]
, (23)

which is our main formula, exposing explicitly the effect of the FSI and the
CP-violating phase for the decay channels with ∆S = 1 and ∆S = 0 carrying
different net strangeness, and therefore not coupled by the strong interaction.

The CP-violating phase enters linearly at the lowest order in the hadron de-
cay amplitude. If we impose CPT invariance of the strong sector, independently
of the weak Hamiltonian, using the steps given in Refs. [17, 37] and summarized
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q= d or s

S-matrix unitarity and CPT invariance of the weak and strong Hamiltonians 
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G.C. Branco, L. Lavoura, J.P. Silva, CP Violation, Oxford University Press, 1999. 
I.I. Bigi, A.I. Sanda, CP Violation, second ed., Cambridge University Press, 2009. 

Application to the two channel model pp -KK 

ππ ↔ KKS-matrix unitarity and CPT invariance applied to 2-coupled-channelX
��CP = 0

the interference between S-matrix o↵-diagonal elements in (25) contribute to
��CP (qi).

The U-spin symmetry within this example corresponds to:

U0d⇡⇡ = U0sKK and U0dKK = U0s⇡⇡ ,

C0d⇡⇡ = C0sKK and C0dKK = C0s⇡⇡ . (27)

In addition, if we assume �⇡⇡ ⇡ �KK and equal masses for the pion and kaon,
which means the FSI does not distinguish the change of ⇡ $ K, and taking
into account the opposite signs in wd = �ws, from the unitarity of the CKM
matrix, we get that:

��CP (⇡±K+K�)

��CP (K±⇡+⇡�)
⇠ �1 and

��CP (⇡±⇡+⇡�)

��CP (K±K+K�)
⇠ �1 . (28)

From the sCPT relation ��(q⇡⇡) = ���(qKK) in Eq. (26), we get that

��CP (⇡±K+K�)

��CP (⇡±⇡+⇡�)
= �1 and

��CP (K±K+K�)

��CP (K±⇡+⇡�)
= �1 (29)

Both ratios in relations (28) and (29) are consistent with the signs of asym-
metries and compatible within error with the magnitudes of the ratios given
in Eqs. (3) and (4), respectively. We remind that these ratios were obtained
from Table 1, which was built with the available experimental data for the B
decay rates and CP asymmetry. We stress that within a two coupled-channel
picture the ratios (28) and (29) are valid beyond the LO, and due to that the
superscript (LO) was dropped out in those equations.

6. Final Remarks

Our study shows the relevance of the FSI to the global CPV in B ! hhh
addressed by the ratio of charge conjugate width di↵erences and given by (29).
The comparison of our results with the experimental values in Eqs. (3) and
(4), stresses that the used U-spin symmetry at the hadronic level, namely, the
exchange K $ ⇡ in decay channels is supported by the data. This is more
restrictive than the simple exchange of d $ s of the quark produced at the
weak transition vertex.

The proposed form to apply the U-spin symmetry, together with the sCPT
constrain including the FSI, can reveal the correct relative signs between the
��CP ’s of the charged three-body B decays, as one sees by comparing the
ratios (28) and (29), with those extracted from the experimental values pre-
sented in Eqs. (3) and (4). Note that the magnitudes are reproduced within the
experimental errors.

Although data is still not as precise as we would desire, there will be new
high statistics in the near future by LHCb (Run 2 and Run 3) and from Belle2
which will allow us to better address this issue. From the theoretical side, in the
proposed CPT constrained framework including FSI, we only take into account
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single cabibbo suppressed decays

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

weak phase in  is 20 times smallerKK

what about strong phases if not from penguin? hadronic FSI

Lenz and Wilkinson,  Annu. Rev. Nucl. 
Part. Sci. 71, 59 (2021) 
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

known from 80’s experiment

  and  can decay to  and KKD D̄ ππ

CPT invariance relates channels with same quantum numbers

Watson theorem relates the  strong phase from the rescattering 
process to the decay amplitudes

the unitarity of the strong S-matrix.

Describe amplitudes decays implying three constraints:

X
��CP = 0

Bediaga, Frederico, PCM
arXiv:2203.04056v2
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

dressing the weak tree topology with FSI

  D0 → KK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p
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(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
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+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
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(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.
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and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → KK +

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
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through the general strong S-matrix, involving any num-
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.
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one of them is the relative sign between the ACP ’s in
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FSI and CPT constraint. If we assume that the sin-
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decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
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ud ⇡ �(1 � �4 ei�) and VcsV
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us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].
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tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
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channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
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figure, we can get the transition amplitude to compute
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decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:
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SKK,⇡⇡ SKK,KK
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, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → KK⊗ ⊗
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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D0 → ππ

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → ππ +
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → ππ⊗ ⊗

 and  do not carry any or strong phases     production  aKK aππ
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Final values for ACP
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

SM like!

+ ππ
− KK

In three-body this effect will be bigger and phase-space distributed 

 SCS  and  have exactly the same WV D+ → π+π−π+ D+ → π+K−K+
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Crucial and profit theoretical x experimental Colaboration
 (Bediaga-CBPF/LHCb, Frederico-ITA, PCM-ITA/UOB/LHCb) 

Final remarks

B decays:  understand of CPV at low and high mass regions

 rescattering dominates the global  in  ππ → KK ACP B → hhh

Charm rescattering triangles is an important mechanism
interference produce similar CPV data signature 

developed a technique to identify the type of CPV directly from data

make predictions to neutron modes!

Bc decays: 
main mechanism to produce this final state
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We investigate the FSI role in B and D hadronic decays  

our phenomenological models have been implemented to LHCb data
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Final remarks

 we predicted  with FSI approach compatible with LHCb ΔACP

the key ingredient is the coupling between  and 
 channels as source of strong phase in a CPT 

invariant framework

ππ
KK̄

Enhanced charm CP asymmetries from final state interactions
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
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(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

D0 K+K�
⇡+⇡�

VcsV
⇤
us

VcdV
⇤
ud �⇡⇡!KK

FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

new measurement from LHCb will put a straight constraint 

D decays: 

obrigada!!
#staysafe

much more to came!
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D0D̄0 ! K+K�

B+ ! W+D̄0form factor for 

+

A = iC m2
a

Z
d4`

(2⇡)4
TD̄0D0!KK(s23) [�2 p03 · (p02 � p1)]

�D+⇤�D0 �D̄0 �a
, �D+⇤ = s�m2

D⇤+

solved by Feynman technique

A = iC m2
a TD̄0D0!KK(s23)

Z
d4`

(2⇡)4
�D0 + 2�D̄0 � 2 s23 + 3M2

K +M2
B � l2

�D0 �D̄0 �D⇤ [l2 �mB⇤ ]

W+ ! D+⇤
s ! D0K+

<latexit sha1_base64="CmQGf8kbk5fkw7bRlP2rhZQ8/o4=">AAACA3icbVDLSgMxFL3js9bXqDvdBIsgFspMFdRdQReCmwr2Ae10yKSZNjTzIMkIZSi48VfcuFDErT/hzr8xbWehrQcCh3Pu5eYcL+ZMKsv6NhYWl5ZXVnNr+fWNza1tc2e3LqNEEFojEY9E08OSchbSmmKK02YsKA48Thve4GrsNx6okCwK79Uwpk6AeyHzGcFKS6653+gU2ypC1520eDJy5ZRb6LZTdM2CVbImQPPEzkgBMlRd86vdjUgS0FARjqVs2VasnBQLxQino3w7kTTGZIB7tKVpiAMqnXSSYYSOtNJFfiT0CxWaqL83UhxIOQw8PRlg1Zez3lj8z2slyr9wUhbGiaIhmR7yE4500HEhqMsEJYoPNcFEMP1XRPpYYKJ0bXldgj0beZ7UyyX7tFS+OytULrM6cnAAh3AMNpxDBW6gCjUg8AjP8ApvxpPxYrwbH9PRBSPb2YM/MD5/AAgalc8=</latexit>

(single pole      )B⇤
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CPT in SCS D decays

In principle FSI in D,  can include multiple mesonsD̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.
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B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.
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B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
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B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

general S-matrix can mix this FSI states

CPT constraint restricted to the two-channels:

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.
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B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

two pions cannot go to three pions due to G-parity

ignore four pion coupling to the 2M channel based on 1/Nc counting

assume only 2 couple-channels will contribute to FSI, ie the dominant one KK̄

ignore  channel once their coupling to the  channel are suppressed with 
respect to  .

ηη ππ
KK̄
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
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Consequently, for CPV studies in D0 ! ⇡+⇡� and
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sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].
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�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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Watson theorem

we can use CERN-Munich data from 80’s

strong phases ,  and  are the same independent of the initial processδππ δKK δππ→KK
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FIG. 1. Comparison of solutions I, II and III (Tables I,
II, III) versus data. The gray, blue and green bands corre-
spond to the uncertainty of solutions I, II and III, respectively.
Above 1.4 GeV, solution I fits the data of [5, 64] (solid circles)
and [2, 3] (solid squares), solution II fits [4] (solid diamonds)
and solution III fits the updated (- + -) data from [58] (hol-
low diamonds). The data coming from [9] (empty squares)
and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
#&0'
0 &m2

K' $ #&2'
0 &m2

K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077) 0:008'M$2
! ;

#&0'
0 &m2

K' $ #&2'0 &m2
K' # 52:9) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2*
X

l#even

&2l+ 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2*
X

l#odd

&2l+ 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1+ %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

"tot #
4!2

&1=2&s;mA;mB'
2s1=2

!k

X

l

&2l+ 1'%"el
l + "inel

l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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Watson theorem

  ππ → KK

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 Cohen et al., Phys. Rev. D 22, 2595 (1980). 
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
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The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
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real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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