

Interação de estado final em decaimentos hadronicos de 3 corpos no LHCb: mecanismos para entender a *Violação de CP* em decaimentos de mésons B e D

Patricia C. Magalhães (ITA/UOB/LHCb)

Ignacio Bediaga (CBPF/LHCb) and Tobias Frederico (ITA)

RENAFAE 2022

Motivation

new one CERN conference

FSI as source of CP asymmetry in B decays

update Motivation

FSI to enhance CPV

Patricia Magalhães

CP asymmetry measurements

• Ist observation in charm $\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\tiny CCD}}}{\overset{\text{\scriptstyle CCD}}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\quad CCD}}}{\overset{\text{\scriptstyle CCD}}}{\overset{\quad CCD}}}{\overset{\text{\scriptstyle$

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

direct CP asymmetry observation

•
$$A_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$$
 LHCb Ph

LHCb Phys.Lett.B 767 (2017) 177

• $A_{CP}(\pi^{-}\pi^{+})=(0.07\pm0.14 \text{ (stat)}\pm0.11 \text{ (syst)})\%$

 $\Rightarrow \quad \mathsf{CPV} \text{ on } D \rightarrow hhh?$

→ searches in many process at LHCb, BESIII, BeleII

 \rightarrow can lead to new physics (DCS for ex)

understand the mechanism in two-body is crucial to three-body studies

CPV on data: Puzzle!

condition to CPV

$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f})}{\Gamma(M \to f) + \Gamma(\bar{M} \to \bar{f})}$$

• $2 \neq$ amplitudes, SAME final state with \neq strong (δ_i) and weak (ϕ_i) phase

$$\begin{split} \Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) &= |\langle f \,|\, T \,|\, M \rangle|^2 - |\langle \bar{f} \,|\, T \,|\, \bar{M} \rangle|^2 = -4A_1A_2 \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) \\ A(B \to f) &= A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_1 - \phi_1)} \\ A(\bar{B} \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} \\ A($$

• CPV at rk level: BS\$ model Bander Silverman & Soni PRL 43 (1979) 242

• confirmed by LHCb Amplitude Analysis $B^{\pm} \to \pi^{-}\pi^{+}\pi^{\pm}$ and $B^{\pm} \to \pi^{\pm}K^{-}K^{+}$

PRD101 (2020) 012006; PRL 124 (2020) 031801 PRL 123 (2019) 231802

Patricia Magalhães

CPV: amplitude analysis $B^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$

recent Amplitude analysis $B^{\pm} o \pi^{-} \pi^{+} \pi^{\pm}$ prd 101 (2020) 012006; prl 124 (2020) 031801

- $(\pi^{-}\pi^{+})_{S-Wave}$ 3 different model:
 - $rightarrow \sigma$ as BW (!) + rescattering;
 - P-vector K-Matrix;
 - binned freed lineshape (QMI);

 $m_{\rm low} \, [{
m GeV}/c^2]$

$(0.062 \text{ GeV}/c^2)$	900 800		Isoba K-Ma				$\rightarrow K^+$ nbinat	$\pi^+\pi^-$ orial	(x10)	
б С	700		QMI		+	Dat				-
)62	600									_ f¶_ _iu ≇
0.0	500	LH	Cb		[┿] ╫╪ _{┙╪}	±., + ₊₁			-{∱ - +	4**
	400	2113		Jaha Jaha Jaha Jaha Jaha Jaha Jaha Jaha	+ +	°₩₽	┊╪ ┽╌╁ _{┶╊╋╋}		tti ^l	i
ate	300	(b)		-Æ +			(conc)	+'+ <mark>+</mark> ++	2 1-1	Ľ
Candidates /	200	ال ليع	بتب _ا + 1							
Car	100	F ^r '+								
	0	-								
Pull	3 0 -3	² India		l Ur	راليە	اتي 		╔╻┚	يناني (رياني	
	1	.0 1	.5 3	2.0	2.5	3.0	3.5	4.0	4.5	5.0

Contribution	Fit fraction (10^{-2})	$A_{CP} \ (10^{-2})$	B^+ phase (°)	B^- phase (°)
Isobar model				
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$		
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8 \pm 6 \pm 1$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm \ 6.1 \pm \ 4.7$	$+5\pm$ $3\pm$ 12	$+53\pm2\pm12$
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 1.9$	$-12.9 \pm \ 3.3 \pm 35.9$	$+127\pm 4\pm 21$	$+154\pm 4\pm 6$
$ ho_{3}(1690)^{0}$	$0.5\ \pm 0.1\ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm25$
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4\ \pm 0.1\ \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm$ $4\pm$ 25
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$		
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm 7\pm 4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm~4\pm~18$	$+80\pm 3\pm 17$
$ ho(1450)^{0}$	$10.5\ \pm 0.7\ \pm 4.6$	$+9.0\pm\ 6.0\pm47.0$	$+155\pm5\pm29$	$-166\pm 4\pm 51$
$ ho_3(1690)^0$	$1.5\ \pm 0.1\ \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm$ $8\pm$ 46
S-wave	$25.7 \ \pm 0.6 \ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	—	
QMI				
$ ho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	_	_
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm~6\pm~27$	$-2\pm$ $7\pm$ 11
$f_2(1270)$	$9.6\ \pm 0.4\ \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68\pm3\pm66$
$ ho(1450)^{0}$	$7.4 \ \pm 0.5 \ \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147\pm7\pm152$	$-175\pm5\pm171$
$ ho_3(1690)^0$	$1.0 \ \pm 0.1 \ \pm 0.5$	$-93.2 \pm \ 6.8 \pm 38.9$	$+8\pm10\pm~24$	$+36\pm26\pm~46$
S-wave	$26.8\ \pm 0.7\ \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	—	

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL 123 (2019) 231802

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase ^[o] (B^+/B^-)
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

FSI to enhance CPV

CPV high energy

• charm intermediate processes as source of strong phase

I. Bediaga, PCM, T Frederico PLB 780 (2018) 357

- even dynamically suppressed $Br[B \rightarrow DD_s^*] \sim 1\% \rightarrow 1000 \times Br[B \rightarrow KKK]$
- hadronic loop technique $D^+ \rightarrow \pi^+ K^- \pi^+$

PCM & M Robilotta PRD 92 094005 (2015) PCM et al PRD 84 094001 (2011)

hadronic loop results for $B^{\pm} \to K^{\pm}K^{-}K^{+}$

 Triangle hadronic loop with charm rescattering can generate a phase that change signal near DD threshold

• how this can be translated to the observable CPV?

we need inference with weak-phase!

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$

Bediaga, Frederico, PCM - PLBX (2020)[arXiv:2003.10019]

• Focus on $m_{\pi\pi}^2 > 3 \, GeV^2$

 \searrow avoid low energy resonances

- include χ_{c0} (expected in Run II)
- Important data features
 - data shows a huge CP asymmetry around $m_{\chi_{c0}}^2 = 11.65 \, GeV^2$
 - wide CP asymmetry: same source for a nonresonant amplitude and χ_{c0}
 - \checkmark charm loop and χ_{c0}

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$

•
$$A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \frac{1}{B^{+}} \int_{\overline{D}^{0(+)}} \int_{\pi^{-}}^{\pi^{+}} + a_{0} e^{\pm i\gamma}$$

 $a_{0} = 2 e^{i(\delta_{s} = 45^{\circ})}$

ullet the goal was to reproduce the main observed CPV characteristics —

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$

•
$$A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \frac{1}{B^{+}} \frac{1}{D^{0(+)}} \frac{1}{\pi^{-}} + a_{0} e^{\pm i\gamma}$$

 $a_{0} = 2 e^{i(\delta_{s} = 45^{\circ})}$

ullet the goal was to reproduce the main observed CPV characteristics —

implementing this in RunII amplitude analysis!

charm rescattering in $B_C^+ \to K^+ K^- \pi^+$

- $B_c^+ \to K^+ K^- \pi^+$
 - very suppressed direct production (annihilation)

more events than expected

• Charm rescattering can be the dominant mechanism to generate $KK\pi$

I. Bediaga, PCM, T Frederico PLB 785 (2018) 581

- same favored weak vertex
- leave a signature in the middle of the Dalitz plot
- *LHCP* new data can test it !

$B^{\pm} \rightarrow h^{\pm}(V \rightarrow h^{-}h^{+})$ CPViolation directly from data

Proposed a method to extract the type of CPV in B^{\pm} particular regions of the phase-space directly from data $B^{\pm} \rightarrow h^{\pm} (V \rightarrow h^{+}h^{-})$ • Amplitudes contain only one vector resonance and NR background PRD 94 (2016) 054028

$$\mathcal{M}_{+} = a_{+}^{V} e^{i\delta_{+}^{V}} F_{V}^{BW} \cos \theta(s_{\perp}, s_{\parallel}) + a_{+}^{NR} e^{i\delta_{+}^{NR}} F^{NR}$$

$$\mathcal{M}_{-} \stackrel{B^{\pm}}{=} a_{-}^{\overrightarrow{V}} e^{i\delta_{-}^{\mu}} F_{V}^{BW} \stackrel{\rightarrow}{\cos} \theta(s_{\perp}, s_{\parallel}) + a_{-}^{NR} e^{i\delta_{-}^{NR}} F^{NR}$$

$$B^{+} \qquad B^{-}$$

$$\begin{split} S_{||} &\equiv (p_{h^+} + p_{h^-})^2 \\ S_{\perp} &\equiv (p_{h_b} + p_{h^{\pm}})^2 \\ \theta &\equiv \text{helicity angle} \end{split}$$

Bediaga, Frederico, PCM

Asymmetry \propto to square modulus of amplitude difference:

$$\begin{split} |\mathcal{M}_{+}|^{2} &= \begin{bmatrix} \left(a_{+}^{V}\right)^{2} \mp \left(a_{-}^{V}\right)^{2} \end{bmatrix} \left| F_{V}^{\mathrm{BW}} \right|^{2} \cos^{2} \theta \left(s_{\perp}, s_{\parallel}\right) + \begin{bmatrix} \left(a_{+}^{\mathrm{NR}}\right)^{2} \mp \left(a_{-}^{\mathrm{NR}}\right)^{2} \end{bmatrix} \left| F^{\mathrm{NR}} \right|^{2} \\ &+ 2 \cos \theta \left(s_{\perp}, s_{\parallel}\right) \left| F_{V}^{\mathrm{BW}} \right|^{2} \left| F^{\mathrm{NR}} \right|^{2} \times \\ &\left\{ \left(m_{V}^{2} - s_{\parallel}\right) \left[a_{+}^{V} a_{+}^{\mathrm{NR}} \cos \left(\delta_{+}^{V} - \delta_{+}^{\mathrm{NR}}\right) \mp a_{-}^{V} a_{-}^{\mathrm{NR}} \cos \left(\delta_{-}^{V} - \delta_{-}^{\mathrm{NR}}\right) \right] \\ &- m_{V} \Gamma_{V} \left[a_{+}^{V} a_{+}^{\mathrm{NR}} \sin \left(\delta_{+}^{V} - \delta_{+}^{\mathrm{NR}}\right) \mp a_{-}^{V} a_{-}^{\mathrm{NR}} \sin \left(\delta_{-}^{V} - \delta_{-}^{\mathrm{NR}}\right) \right] \right\} \end{split}$$

direct vector A_{CP} direct NR A_{CP} NR and vector interference

Rev. D94 (2016) 054028

$B^{\pm} \rightarrow h^{\pm}(V \rightarrow h^{-}h^{+})$ CPViolation directly from data

• we select a small region around the resonance in s1 and look for the distribution $\Delta |M^2|$ on s \perp

Bediaga, Frederico, PCM PRD 94 (2016) 054028

15

- $s_{\parallel} \approx m_V^2 \rightarrow \cos\theta (s\perp)$
- can parametrize $\Delta |\mathcal{M}|^2 = a(x-c_0)^2 + b(x-c_0) + c$ for $\cos \theta = x - c_0$

Patricia Magalhães

 Applied to LHCb runll data !

Decay channel	Vector Resonance	$\mathcal{A}_{CP}^{V} \pm \sigma_{\mathrm{stat}} \pm \sigma_{\mathrm{syst}}$	
$B^\pm \to \pi^\pm \pi^+ \pi^-$	$\rho(770)^0 \to \pi^+\pi^-$	$-0.004 \pm 0.017 \pm 0.007$	(0.2 <i>σ</i>)
$B^{\pm} \to K^{\pm} \pi^+ \pi^-$	$ \rho(770)^0 \to \pi^+\pi^- $ $ K^*(892)^0 \to K^{\pm}\pi^{\mp} $	$+0.150 \pm 0.019 \pm 0.008$ $-0.015 \pm 0.021 \pm 0.007$	(7.2 <i>σ</i>) (0.7 <i>σ</i>)
$B^\pm \to \pi^\pm K^+ K^-$	$K^*(892)^0 \to K^\pm \pi^\mp$	$+0.007 \pm 0.054 \pm 0.028$	(0.1 <i>σ</i>)
$B^\pm \to K^\pm K^+ K^-$	$\phi(1020) \to K^+K^-$	$+0.004 \pm 0.010 \pm 0.006$	(0.2 <i>σ</i>)

Patricia Magalhäes

FSI to enhance CPV 1

and K° . For the \mathcal{B}

Global CPViolation

fatte hit offer and the spin symmetry to de the spin of the U-spin of the U-spin symmetry to de the spin of the U-spin of the U-spin symmetry to de the spin of the U-spin symmetry to d

Remain Former and the state of $B \rightarrow a$ in the state of B \rightarrow a in the state of B \rightarrow a in the state of

Hamiltonian for the decay, is whiten as the state of the second state of

Figure With the tree (left panel) and with the bound of the second of th

FSI as the source of CPV in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$

• Ist observation in charm \mathcal{KC} 2019 $A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-)$

single cabibbo suppressed decays

FSI as the source of CPV

(a) Tree diagram

• the unitarity of the strong S-matrix.

u

Decay amplitudes

(a) Tree diagram:

Final values for A_{CP}

•
$$A_{CP}(f) \approx \pm 2 \frac{-\operatorname{Im}[V_{cs}^* V_{us} V_{cd} V_{ud}^*]}{|V_{cs}^* V_{us} V_{cd} V_{ud}^*|} \eta^{-1} \sqrt{1 - \eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+ K^-)}{\operatorname{Br}(D^0 \to \pi^+ \pi^-)} \right]^{\pm \frac{1}{2}} \overline{i} u$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$

 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\eta \approx 0.973$$
 (from Pelaez Parametrization)

$$\rightarrow A_{CP}(\pi\pi) = (0.47 \pm 0.13) \times 10^{-3}$$

$$\rightarrow$$
 $A_{CP}(KK) = -(0.17 \pm 0.19) \times 10^{-3}$

$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3}$$

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

• In three-body this effect will be bigger and phase-space distributed $B^ \hookrightarrow$ SCS $D^+ \to \pi^+ \pi^- \pi^+$ and $D^+ \to \pi^+ K^- K^+$ have exactly the same WV

Patricia Magalhães

Ŀ

SM like!
$$V_{cd}V_{ud}^*$$

b

Final remarks

 Crucial and profit theoretical x experimental Colaboration (Bediaga-CBPF/LHCb, Frederico-ITA, PCM-ITA/UOB/LHCb)
 We investigate the FSI role in B and D hadronic decays

> our phenomenological models have been implemented to LHCb data

- B decays: understand of CPV at low and high mass regions
 - $→ \pi \pi → KK$ rescattering dominates the global A_{CP} in B → hhh→ make predictions to neutron modes!
 - Charm rescattering triangles is an important mechanism interference produce similar CPV data signature
 - \checkmark developed a technique to identify the type of CPV directly from data

main mechanism to produce this final state

Final remarks

- D decays: we predicted ΔA_{CP} with FSI approach compatible with LHCD (a) The diagram.
 - the key ingredient is the coupling between $\pi\pi$ and $K\bar{K}$ channels as source of strong phase in a CPT invariant framework

 \searrow new measurement from LHCb will put a straight constraint V_{ub}

Patricia Magalhães

• much more to came!

obrigada!! #staysafe

 \overline{u}

 D^0

 $V_{cd}V_{ud}^*$

 $\pi^+\pi^-$

 $FURE 1.7: B^{-} \Rightarrow \pi^{-}$

 $\int_{\delta_{\pi\pi o KK}} \chi^5$

 K^+K^-

 W^-

Backup slides

•
$$A = iC \ m_a^2 \ T_{\bar{D^0}D^0 \to KK}(s_{23}) \int \frac{d^4\ell}{(2\pi)^4} \ \frac{\Delta_{D^0} + 2\Delta_{\bar{D^0}} - 2s_{23} + 3M_K^2 + M_B^2 - l^2}{\Delta_{D^0}\Delta_{\bar{D^0}}\Delta_{D*} \left[l^2 - m_{B*}\right]}$$

→ solved by Feynman technique

Charm rescattering $B_c^+ \to K^- K^+ \pi^+$

- minima in different positions (≠ thresholds)
 - ≠ mass parameters inside triangle and rescattering amplitudes are relevant

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2M channel based on I/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to $K\bar{K}$.
- CPT constraint restricted to the two-channels:

$$\sum_{\pi\pi,KK} (|\mathcal{A}_{D^0 \to f}|^2 - |\mathcal{A}_{\bar{D}^0 \to f}|^2)$$

f = (

= 0

Watson theorem

300.

Kaminski et al.
 Grayer et al. b)
 Na48/2 et al.

 $\delta_0^0(s)$

¹ Magalhães

Watson theorem $\propto \lambda^2$

