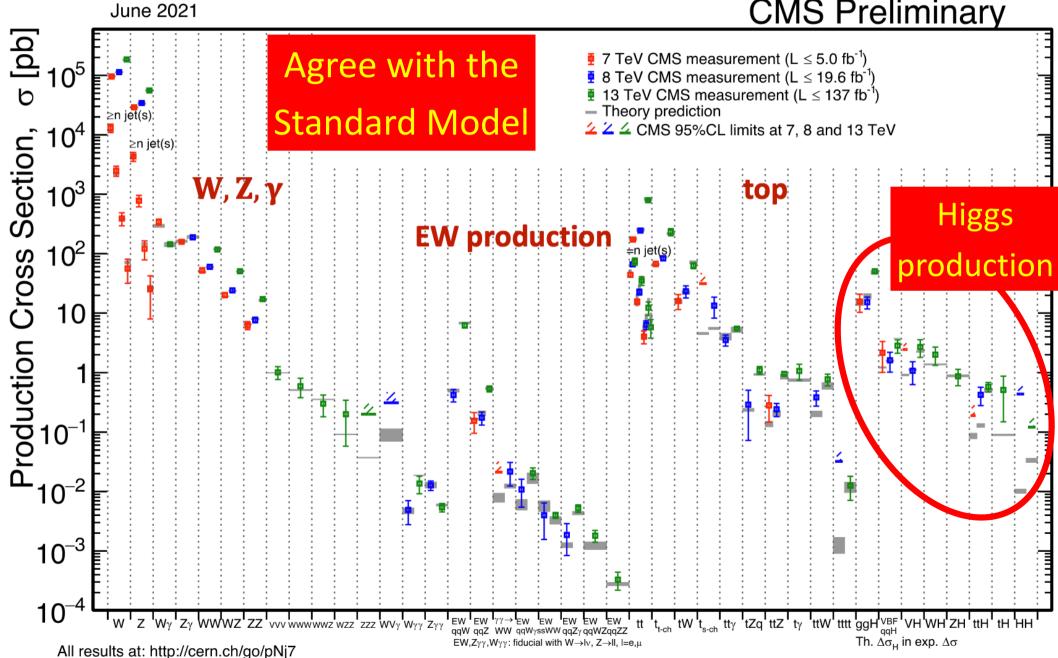
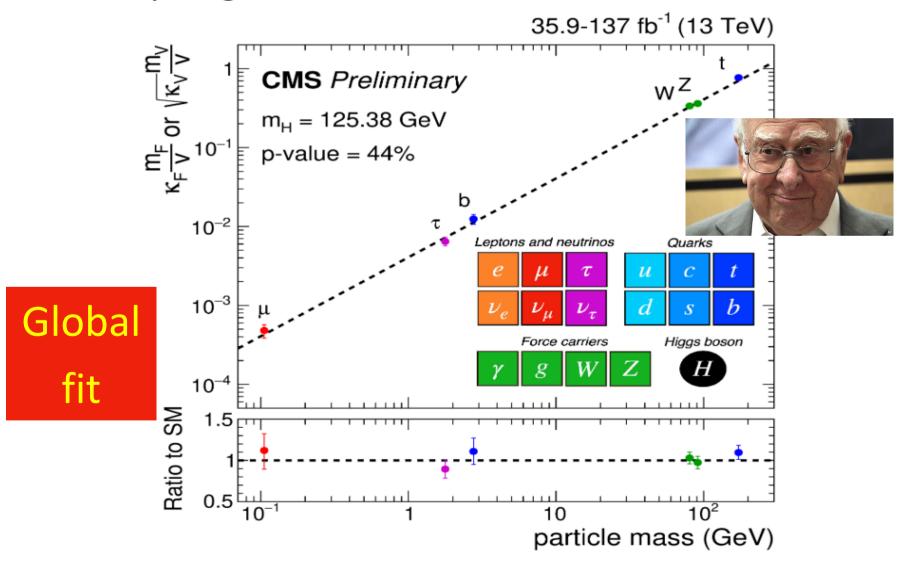
Particle Physics: Which Way Beyond the Standard Model?

LHC measurements and the Higgs boson Beyond the Standard Model with Effective Field Theory Lepton Flavour Non-Universality in *B* Meson Decays?


$$g_{\mu} - 2?$$

John Ellis

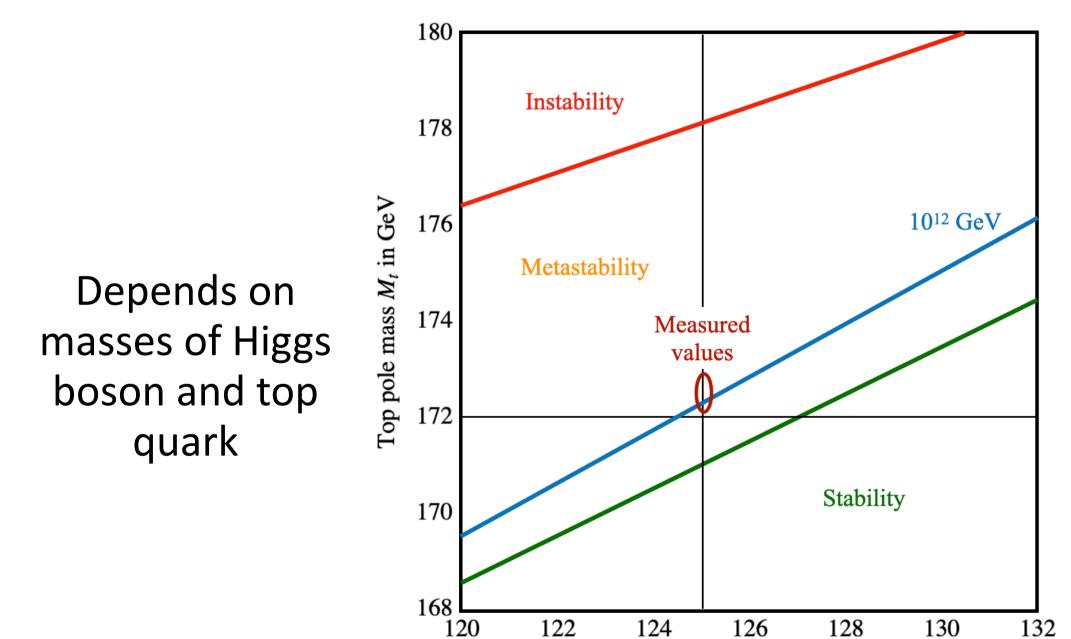

LHC Measurements

CMS Preliminary

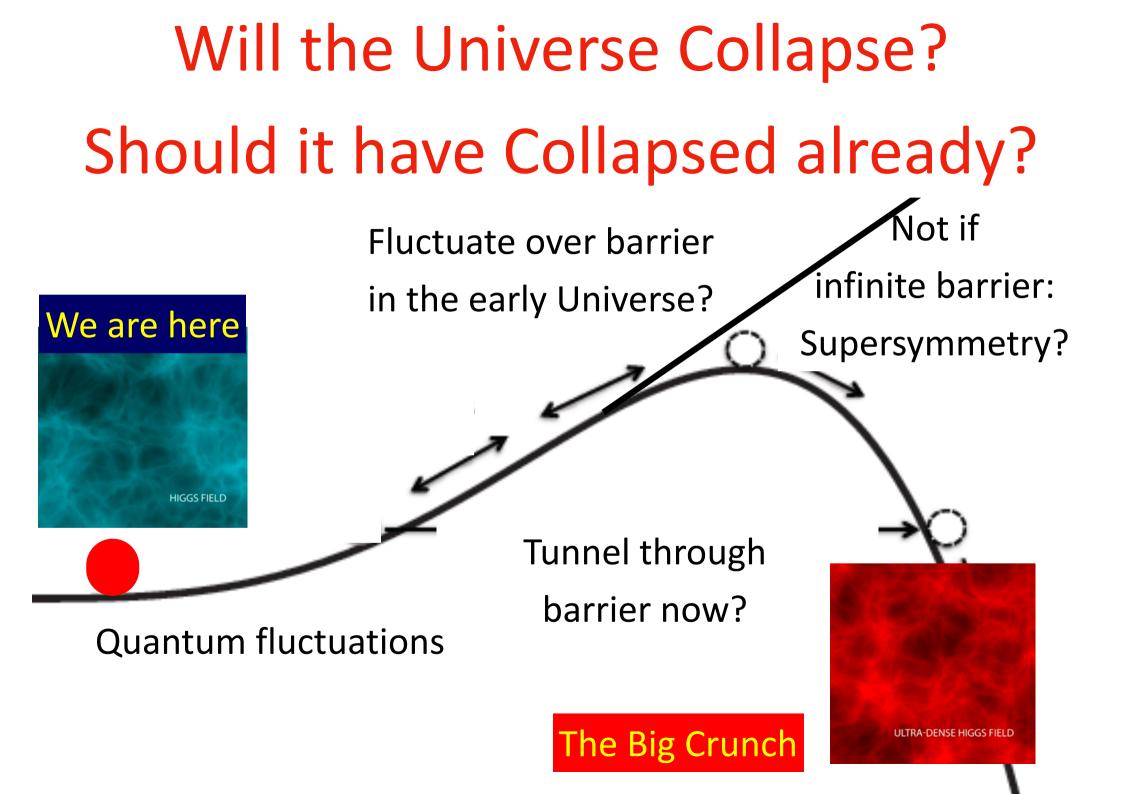
It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding


Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$


- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ :
 - Stability of electroweak vacuum
- Cosmological constant term V₀:
 - Dark energy

Higher-dimensional interactions?

Is "Empty Space" Unstable?

Higgs pole mass M_h in GeV

Is "Empty Space" Unstable?

 Dependence of instability scale on masses of Higgs boson and top quark, and strong coupling:

 $\text{Log}_{10} \frac{\Lambda}{\text{GeV}} = 10.5 - 1.3 \left(\frac{m_t}{\text{GeV}} - 172.6 \right) + 1.1 \left(\frac{m_H}{\text{GeV}} - 125.1 \right) + 0.6 \left(\frac{\alpha_s(m_Z) - 0.1179}{0.0009} \right)$

Buttazzo et al. arXiv:1307.3536

- New CMS value of m_t : CMS Collaboration, April 2022 $m_t = 171.77 \pm 0.38 \,\text{GeV}$
- Particle Data Group values:

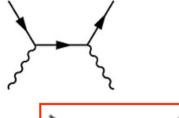
 $m_H = 125.25 \pm 0.17 \,\text{GeV}, \quad \alpha_s(m_Z) = 0.1179 \pm 0.0009$

• Instability scale:

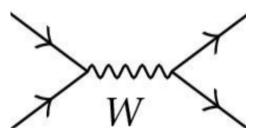
$$\mathrm{Log}_{10}\frac{\Lambda}{\mathrm{GeV}} = 11.7 \pm 0.8$$

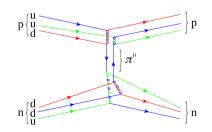
• Dominant uncertainties those in α_s and m_t

Looking Beyond the Standard Model with the SMEFT


"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"


Sun Tzu


Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

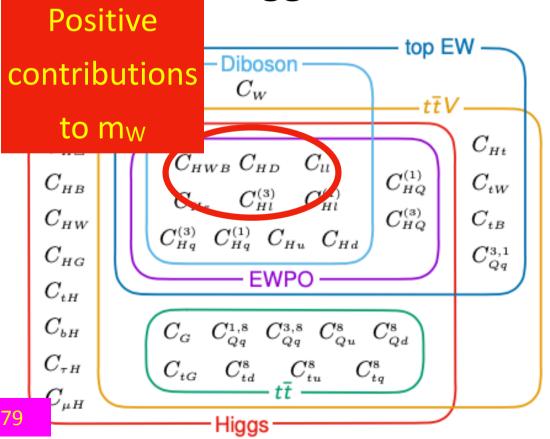
Summary of Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

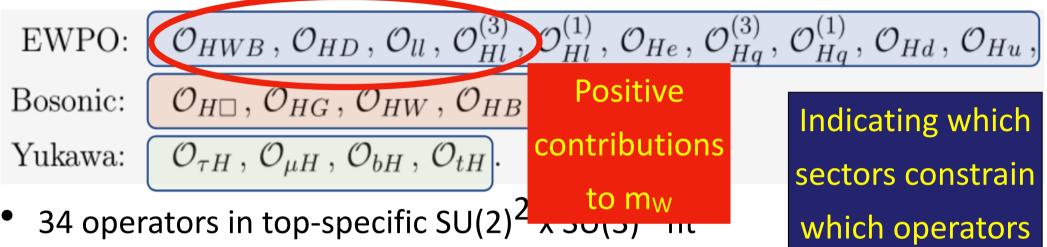
- Simplify by assuming flavour SU(3)⁵ or
 SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Dimension-6 SMEFT Operators


- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

		X^3			H^6	and H^4D^2	$\psi^2 H^3$				
	$\left[\mathcal{O}_{G} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} \right]$			\mathcal{O}_H $(H^{\dagger}H)^3$			\mathcal{O}_{eH} $(H^{\dagger}H)(\bar{l}_p e_r H)$				
	$\mathcal{O}_{\tilde{G}}$ $f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			$\mathcal{O}_{H\square} \qquad (H^{\dagger}H)\square(H^{\dagger}H)$			${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$			
	$\mathcal{O}_{W} = \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$			$\mathcal{O}_{HD} \left(H^{\dagger}D^{\mu}H\right)^{\star} \left(H^{\dagger}D_{\mu}H\right)$			$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$			
	$\mathcal{O}_{\widetilde{W}} \qquad \varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$										
	X^2H^2					$\psi^2 X H$		$\psi^2 H^2 D$			
C	$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$)	${\cal O}_{eW}$	($\bar{l} \sigma^{\mu u} e_r \tau^I H W^I_{\mu u}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$			
	$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$		${\cal O}_{eB}$		$(\bar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{Hl}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$			
C	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	A	nomal	ous	$_{p}\sigma^{\mu u}T^{A}u_{r})\widetilde{H}G^{A}_{\mu u}$	${\cal O}_{_{He}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$			
C	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu u} W^{I\mu u}$				$_{p}\sigma^{\mu u}u_{r}) au^{I}\widetilde{H}W^{I}_{\mu u}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r)$			
C	$\mathcal{O}_{{}_{HB}}$	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	r	nagne	tic	$(\bar{q}_p \sigma^{\mu u} u_r) \hat{l}^{\dagger} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D_{\underline{\mu}}}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$			
C	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	n	nomer	nts	$_{p}\sigma^{\mu u}T^{A}d_{r}HG^{A}_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$			
O	\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	J	U dW		$d_{lp}\sigma^{\mu\nu}d_r)\tau HW^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H) (\bar{d}_p \gamma^{\mu} d_r)$			
\mathcal{O}	$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		\mathcal{O}_{dB}		$\bar{q}_p \sigma^{\mu u} d_{ m o} H B_{\mu u}$	${\cal O}_{{}_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			
		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(RR)$				$(\bar{L}L)(\bar{R}R)$			
	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		\mathcal{O}_{ee}	($(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
11 1	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$		\mathcal{O}_{uu}		$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$ar{\langle v_p \gamma_\mu l_r angle} (ar{u}_s \gamma^{\mu} u_{ u})$			
	$\mathcal{O}_{qq}^{(3)} \qquad (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$		$\mathcal{O}_{dd} = (ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$		\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$					
	$\mathcal{O}_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$		\mathcal{O}_{eu}		$(e_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
	${\cal O}_{lq}^{(3)}$	$(l_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$		$egin{array}{c} \mathcal{O}_{ed} \ \mathcal{O}_{ud}^{(1)} \end{array}$		$ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (u_s \gamma^\mu u_t)$			
					(*	$\bar{u}_p \gamma_\mu u_r) (a_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$			
	Flavour anomalies			$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p\gamma)$	$(\bar{d}_s \gamma^\mu T^A d_t) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
	ГІА	ivour anomalies		11							
	ГId	ivour anomalies					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
		$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$				R vie	lating	Barvon			
	$(ar{L}R)$ \mathcal{O}_{ledq}			\mathcal{O}_{duq}		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d ight) ight)$	$(a_p^{\alpha})^T C u_r^{\beta}$	$[(q_s^{\gamma j})^T C l_t^r]$ Baryon			
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$(a_p^{lpha})^T C u_r^{eta}] = (a_p^{lpha})^T C q_r^{eta k}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \end{bmatrix} $ decay			
C	$egin{array}{c} (ar{L}R) \ \mathcal{O}_{ledq} \ \mathcal{O}_{quqd} \ \mathcal{O}_{quqd}^{(1)} \ \mathcal{O}_{quqd}^{(8)} \end{array}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(ar{q}_s^a d_t) \ (ar{q}_r^j T^A u_r) arepsilon_{str}(ar{q}_s^k T^A d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$ \begin{array}{c} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left(q_{p}^{\alpha}\right)\right] \end{array} $	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$			
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$	$l_t)$	\mathcal{O}_{duq}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$			


Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

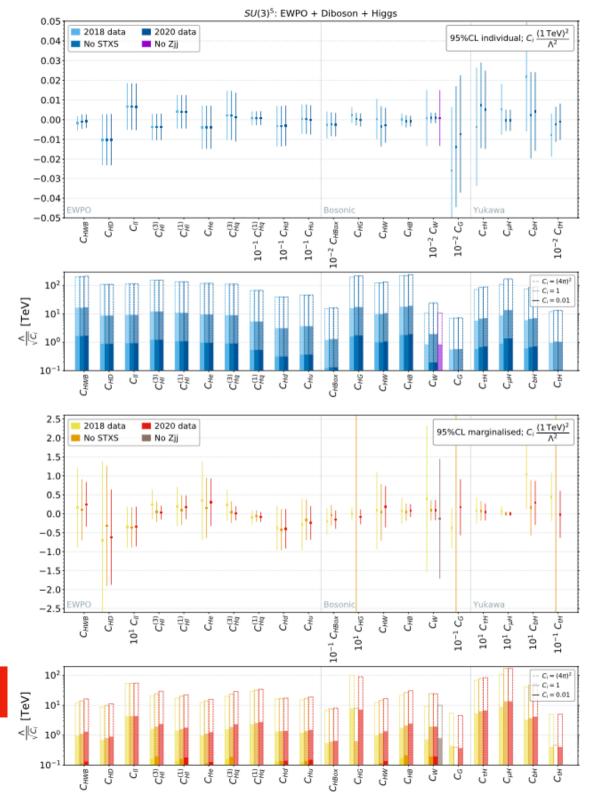
- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

Operators included in Global Fit

20 operators in flavour-universal SU(3)⁵ fit

EWPO:
$$\mathcal{O}_{HWB}$$
, \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,
Bosonic: $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} ,
Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} ,
Top 2F: $\mathcal{O}_{HQ}^{(3)}$, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB} ,
Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{tu}^{8} , \mathcal{O}_{td}^{8} . (2.12)

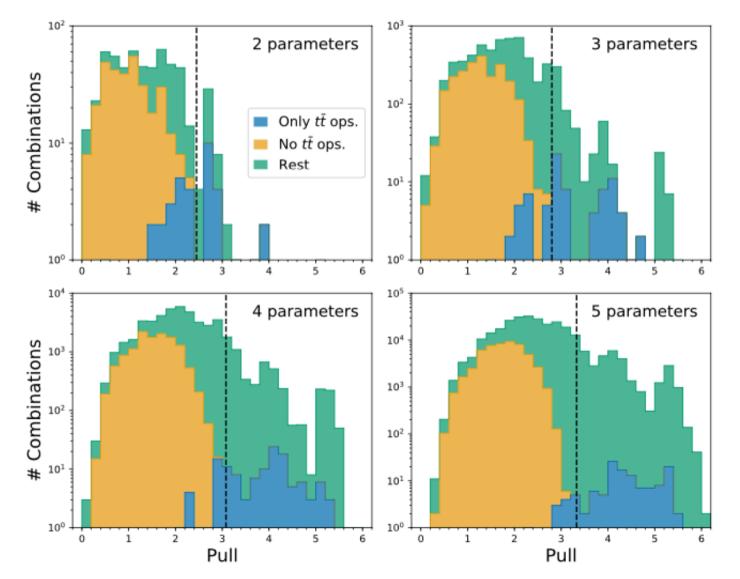
Data included in Global Fit


EW precision observables							
Precision electroweak measurem	LHC Run 2 Higgs	Tevatr	ron & Run 1 top	nobs	Ref.		
$\Gamma_Z, \sigma^0_{\text{had}}, R^0_{\ell}, A^\ell_{FB}, A_\ell(\text{SLD}), A$	ATLAS combination (Tevatro	on combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]		
Combination of CDF and D0 W	including ratios of bra					D.C.	
LHC run 1 W boson mass measu	Signal strengths coars	$d\sigma$	Run 2 top		nobs	Ref.	
hite fui f tr boboi mabb meas	CMS LHC combinatio	$\overline{dm_{t\bar{t}}}$ ATLA	CMS $t\bar{t}$ differential distributions in the dilepton channel.		6	[36,	
Diboson LEP & LHC	Production: ggF, VB	$\frac{d\sigma}{dm_{t\bar{t}}}$	$dm_{t\bar{t}}$		10	231] [37]	
$W^+ W^-$ angular distribution me	Decay: $\gamma\gamma$, ZZ , W^+W	$\gamma\gamma, ZZ, W^+W$ CMS t differential distributions in the ℓ +jets channel.					
$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$	$\frac{\overline{dm_{t\bar{t}}}}{\text{ATLAS measurement of differential t\bar{t} charge asymmetry, } A_C(n)$	m)	5	[38]	
final states for 8 energies	A_{CMS} ATLAS measurement of differential tr charge asymmetry, $A_{C}(m_{t\bar{t}})$.						
$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	ATLA	CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z} $		2	[39] [40]	
qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte	CMS $t\bar{t}Z$ differential distributions.		44	[41]	
$W^+ W^-$ total cross section meas	CMS differential cross	ATLA	$\frac{d\sigma}{dp_Z^T}$ $\frac{d\sigma}{d\cos\theta^*}$				
& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	$A_C(m - CMS i$	CMS measurement of differential cross sections and charge rat	ios for t-	5 5	[42]	
ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	$\frac{d\sigma}{dm_{t\bar{t}}dy}$	channel single-top quark production.				
$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid R_t\left(p_{t+\bar{t}}^T\right)$				
ATLAS W^+W^- fiducial differen	ATLAS $H \rightarrow \mu^+ \mu^-$ si	decay. ATLA	CMS measurement of t -channel single-top and anti-top cross se	ections.	4	[43]	
$\frac{d\sigma}{dp_{\ell_1}^T}$		f_0, f_L	$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$				
$^{ap_{\tilde{\ell}_1}}$ ATLAS $W^{\pm} Z$ fiducial differentia	l cross section in the ℓ^+	CMS	CMS measurement of the <i>t</i> -channel single-top and anti-top cross	sections.	1 1 1 1	[44]	
	ϵ cross section in the ϵ	f_0, f_L	$\sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$			[17]	
$\frac{d\sigma}{dp_Z^T}$		ATLA CMS i	CMS <i>t</i> -channel single-top differential distributions. $d\sigma = \frac{d\sigma}{d\sigma}$		4 4	[45]	
CMS $W^{\pm} Z$ normalised fiducial d	ifferential cross section	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid \frac{d\sigma}{d y_{t+\bar{t}} }$				
channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_Z^T}$		$\frac{d\sigma}{dp_t^T}$	ATLAS <i>tW</i> cross section measurement. 341 m	easu	remei	nts	
ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	CMS a	$\begin{array}{c} \text{CMS } tZ \text{ cross section measurement.} \\ \text{CMS } tW \text{ cross section measurement.} \end{array}$				
LUC Days 1 Ularge		$CMS_{d\sigma}$	ATLAS tZ cross section measurement.	clude	din		
LHC Run 1 Higgs			CMS tZ ($Z \to \ell^+ \ell^-$) cross section measurement.	CIGGC	мп	H	
ATLAS and CMS LHC Run 1 co	00 0				· ·		
Production: ggF , VBF , ZH , WH & ttH			$S_{s-\text{channel single-top cross section measurement.}}$	<u>par an</u>	alysis	5	
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ & $b\bar{b}$			W cross section measurement.	1	[00]		
ATLAS inclusive $Z\gamma$ signal streng	gth measurement		S tW cross section measurement in the single lepton channel	1	[34]		
		ATLAS	S <i>tW</i> cross section measuremen JE, Madigan, Mimasu, Sana	c & You, ar	10:2012.02	//9	

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other
 operator
 coefficients

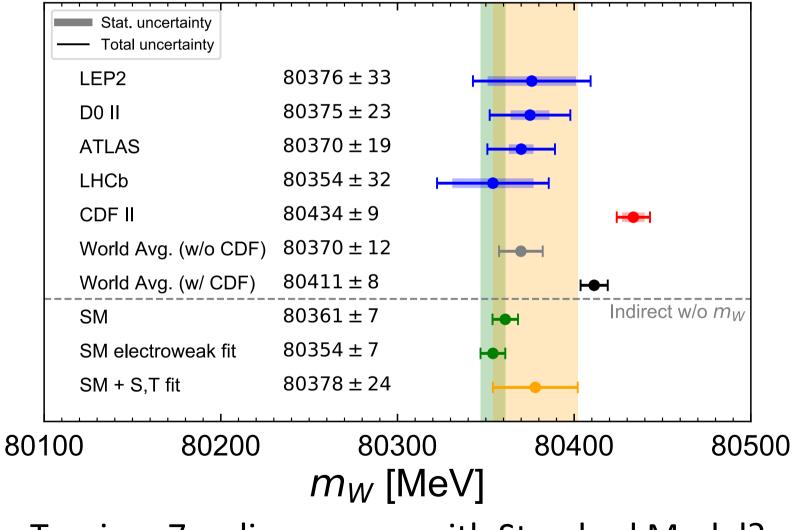
No significant deviations from SM


JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Model-Independent BSM Survey

Switch on random subsets of 2, 3, 4 or 5 operators

- Top-less sector fits SM very well
- Top sector does not fit so well
- Mixed set intermediate
- Overall, pulls not excessive
- No hint of BSM



High-precision measurement of the W boson mass with the CDF II detector

CDF Collaboration 12, T. Aaltonen^{1,2}, S. Amerio^{3,4}, D. Amidei⁵, A. Anastassov⁶, A. Annovi⁷, J. Antos^{8,9}, G. Apollinari⁶, J. A. Appel⁶, T. Arisawa¹⁰, A. Artikov¹¹, J. Asaadi¹², W. Ashmanskas⁶, B. Auerbach¹³, A. Aurisano¹², F. Azfar¹⁴, W. Badgett⁶, T. Bae^{15,16,17,18,19,20,21}, A. Barbaro-Galtieri²², V. E. Barnes²³, B. A. Barnett²⁴, P. Barria^{25,26}, P. Bartos^{8,9}, M. Bauce^{3,4}, F. Bedeschi²⁵, S. Behari⁶, G. Bellettini^{25,27}, J. Bellinger²⁸, D. Benjamin²⁹, A. Beretvas⁶, A. Bhatti³⁰, K. R. Bland³¹, B. Blumenfeld²⁴, A. Bocci²⁹, A. Bodek³², D. Bortoletto²³, J. Boudreau³³, A. Boveia³⁴, L. Brigliadori^{35,36}, C. Bromberg³⁷, E. Brucken¹², J. Budagov¹¹8, H. S. Budd³², K. Burkett⁶, G. Busetto^{3,4}, P. Bussev³⁸, P. Butti^{25,27}, A. Buzatu³⁸, A. Calamba³⁹, S. Camarda⁴⁰, M. Campanelli⁴¹, B. Carls⁴², D. Carlsmith²⁸, R. Carosi²⁵, S. Carrillo⁴³ & B. Casal⁴⁴, M. Casarsa⁴⁵, A. Castro^{35,36}, P. Catastini⁴⁶, D. Cauz^{45,47,48}, V. Cavaliere⁴², A. Cerri²², L. Cerrito⁴¹, Y. C. Chen⁴⁹, M. Chertok⁵⁰, G. Chiarelli²⁵, G. Chlachidze⁶, K. Cho^{15,16,17,18,19,20,21}, D. Chokheli¹¹, A. Clark⁵¹, C. Clarke⁵², M. E. Convery⁶, J. Conway⁵⁰, M. Corbo⁶, M. Cordelli⁷, C. A. Cox⁵⁰, D. J. Cox⁵⁰, M. Cremonesi²⁵, D. Cruz¹², J. Cuevas⁴⁴, R. Culbertson⁶, N. d'Ascenzo⁶, M. Datta⁶, P. de Barbaro³², L. Demortier³⁰, M. Deninno³⁵§, M. D'Errico^{3,4}, F. Devoto^{1,2}, A. Di Canto^{25,27}, B. Di Ruzza⁶, J. R. Dittmann³¹, S. Donati^{25,27}, M. D'Onofrio⁵³, M. Dorigo^{45,54}, A. Driutti^{45,47,48}, K. Ebina¹⁰, R. Edgar⁵, A. Elagin³⁴, R. Erbacher⁵⁰, S. Errede⁴², B. Esham⁴², S. Farrington¹⁴, J. P. Fernández Ramos⁵⁵, R. Field⁴³, G. Flanagan⁶, R. Forrest⁵⁰, M. Franklin⁴⁶, J. C. Freeman⁶, H. Frisch³⁴, Y. Funakoshi¹⁰, C. Galloni^{25,27}, A. F. Garfinkel²³, P. Garosi^{25,26}, H. Gerberich⁴², E. Gerchtein⁶, S. Giagu⁵⁶, V. Giakoumopoulou⁵⁷, K. Gibson³³, C. M. Ginsburg⁶, N. Giokaris⁵⁷§, P. Giromini⁷, V. Glagolev¹¹, D. Glenzinski⁶, M. Gold⁵⁸, D. Goldin¹², A. Golossanov⁶, G. Gomez⁴⁴, G. Gomez-Ceballos⁵⁹, M. Goncharov⁵⁹, O. González López⁵⁵, I. Gorelov⁵⁸, A. T. Goshaw²⁹, K. Goulianos³⁰, E. Gramellini³⁵, C. Grosso-Pilcher³⁴, J. Guimaraes da Costa⁴⁶, S. R. Hahn⁶, J. Y. Han³², F. Happacher⁷, K. Hara⁶⁰, M. Hare⁶¹, R. F. Harr⁵², T. Harrington-Taber⁶, K. Hatakeyama³¹, C. Hays¹⁴, J. Heinrich⁶², M. Herndon²⁸, A. Hocker⁶, Z. Hong¹², W. Hopkins⁶, S. Hou⁴⁹, R. E. Hughes⁶³, U. Husemann⁶⁴, M. Hussein³⁷, J. Huston³⁷, G. Introzzi^{25,65,66}, M. Iori^{56,67}, A. Ivanov⁵⁰, E. James⁶, D. Jang³⁹, B. Jayatilaka⁶, E. J. Jeon^{15,16,17,18,19,20,21}, S. Jindariani⁶, M. Jones²³, K. K. Joo^{15,16,17,18,19,20,21}, S. Y. Jun³⁹, T. R. Junk⁶, M. Kambeitz⁶⁸, T. Kamon^{15,16,17,18,19,20,21,12}, P. E. Karchin⁵², A. Kasmi³¹, Y. Kato⁶⁹, W. Ketchum³⁴, J. Keung⁶², B. Kilminster⁶, D. H. Kim^{15,16,17,18,19,20,21}, H. S. Kim⁶, J. E. Kim^{15,16,17,18,19,20,21}, M. J. Kim⁷, S. H. Kim⁶⁰, S. B. Kim^{15,16,17,18,19,20,21}, Y. J. Kim^{15,16,17,18,19,20,21}, Y. K. Kim³⁴, N. Kimura¹⁰, M. Kirby⁶, K. Kondo¹⁰S, D. J. Kong^{15,16,17,18,19,20,21}, J. Konigsberg⁴³, A. V. Kotwal²⁹*, M. Kreps⁶⁸, J. Kroll⁶², M. Kruse²⁹, T. Kuhr⁶⁸, M. Kurata⁶⁰, A. T. Laasanen²³, S. Lammel⁶, M. Lancaster⁴¹, K. Lannon⁶³, G. Latino^{25,26}, H. S. Lee^{15,16,17,18,19,20,21}, J. S. Lee^{15,16,17,18,19,20,21}, S. Leo⁴², S. Leone²⁵, J. D. Lewis⁶, A. Limosani²⁹, E. Lipeles⁶², A. Lister⁵¹, O. Liu²³, T. Liu⁶, S. Lockwitz⁶⁴, A. Loginov⁶⁴ §. D. Lucchesi^{3,4}. A. Lucà^{7,6}. J. Lueck⁶⁸. P. Lujan²². P. Lukens⁶. G. Lungu³⁰, J. Lys²²§, R. Lysak^{8,9}, R. Madrak⁶, P. Maestro^{25,26}, S. Malik³⁰, G. Manca⁵³, A. Manousakis-Katsikakis⁵⁷, L. Marchese³⁵, F. Margaroli⁵⁶, P. Marino^{25,70}, K. Matera⁴², M. E. Mattson⁵², A. Mazzacane⁶, P. Mazzanti³⁵, R. McNulty⁵³, A. Mehta⁵³, P. Mehtala^{1,2}, A. Menzione²⁵S, C. Mesropian³⁰, T. Miao⁶, E. Michielin^{3,4}. D. Mietlicki⁵, A. Mitra⁴⁹, H. Miyake⁶⁰, S. Moed⁶, N. Moggi³⁵, C. S. Moon^{15,16,17,18,19,20,21}, R. Moore⁶, M. J. Morello^{25,70}, A. Mukherjee⁶, Th. Muller⁶⁸, P. Murat⁶, M. Mussini^{35,36}, J. Nachtman⁶, Y. Nagai⁶⁰, J. Naganoma¹⁰, I. Nakano⁷¹, A. Napier⁶¹, J. Nett¹², T. Nigmanov³³, L. Nodulman¹³, S. Y. Noh^{15,16,17,18,19,20,21}, O. Norniella⁴², L. Oakes¹⁴, S. H. Oh²⁹, Y. D. Oh^{15,16,17,18,19,20,21}, T. Okusawa⁶⁹, R. Orava^{1,2}, L. Ortolan⁴⁰, C. Pagliarone⁴⁵, E. Palencia⁴⁴, P. Palni⁵⁸, V. Papadimitriou⁶, W. Parker²⁸, G. Pauletta^{45,47,48}, M. Paulini³⁹, C. Paus⁵⁹, T. J. Phillips²⁹, G. Piacentino⁶, E. Pianori⁶², J. Pilot⁵⁰, K. Pitts⁴², C. Plager⁷², L. Pondrom²⁸, S. Poprocki⁶, K. Potamianos²², A. Pranko²², F. Prokoshin¹¹, F. Ptohos⁷, G. Punzi^{25,27}, I. Redondo Fernández⁵⁵, P. Renton¹⁴, M. Rescigno⁵⁶, F. Rimondi³⁵§, L. Ristori^{25,6}, A. Robson³⁸, T. Rodriguez⁶², S. Rolli⁶¹, M. Ronzani^{25,27}, R. Roser⁶, J. L. Rosner³⁴, F. Ruffini^{25,26}, A. Ruiz⁴⁴, J. Russ³⁹, V. Rusu⁶, W. K. Sakumoto³², Y. Sakurai¹⁰, L. Santi^{45,47,48}, K. Sato⁶⁰, V. Saveliev⁶, A. Savoy-Navarro⁶, P. Schlabach⁶, E. E. Schmidt⁶, T. Schwarz⁵, L. Scodellaro⁴⁴, F. Scuri²⁵, S. Seidel⁵⁸, Y. Seiya⁶⁹, A. Semenov¹¹, F. Sforza^{25,27}, S. Z. Shalhout⁵⁰, T. Shears⁵³, P. F. Shepard³³, M. Shimojima⁶⁰, M. Shochet³⁴, I. Shreyber-Tecker⁷³, A. Simonenko¹¹, K. Sliwa⁶¹, J. R. Smith⁵⁰, F. D. Snider⁶, H. Song³³, V. Sorin⁴⁰, R. St. Denis³⁸§, M. Stancari⁶, D. Stentz⁶, J. Strologas⁵⁸, Y. Sudo⁶⁰, A. Sukhanov⁶, I. Suslov¹¹, K. Takemasa⁶⁰, Y. Takeuchi⁶⁰, J. Tang³⁴, M. Tecchio⁵, P. K. Teng⁴⁹, J. Thom⁶, E. Thomson⁶², V. Thukral¹², D. Toback¹², S. Tokar^{8,9}, K. Tollefson³⁷, T. Tomura⁶⁰, S. Torre⁷, D. Torretta⁶, P. Totaro³, M. Trovato^{25,70}, F. Ukegawa⁶⁰, S. Uozumi^{15,16,17,18,19,20,21}, F. Vázquez⁴³, G. Velev⁶, K. Vellidis⁵⁷, C. Vernieri^{25,70}, M. Vidal²³, R. Vilar⁴⁴, J. Vizán⁴⁴, M. Vogel⁵⁸, G. Volpi⁷, P. Wagner⁶², R. Wallny⁶, S. M. Wang⁴⁹, D. Waters⁴¹, W. C. Wester III⁶, D. Whiteson⁶², A. B. Wicklund¹³, S. Wilbur⁵⁰, H. H. Williams⁶², J. S. Wilson⁵, P. Wilson⁶, B. L. Winer⁶³, P. Wittich⁶, S. Wolbers⁶, H. Wolfmeister⁶³, T. Wright⁵, X. Wu⁵¹, Z. Wu³¹, K. Yamamoto⁶⁹, D. Yamato⁶⁹, T. Yang⁶, U. K. Yang^{15,16,17,18,19,20,21}, Y. C. Yang^{15,16,17,18,19,20,21}, W.-M. Yao²², G. P. Yeh⁶, K. Yi⁶, J. Yoh⁶, K. Yorita¹⁰, T. Yoshida⁶⁹, G. B. Yu^{15,16,17,18,19,20,21}, I. Yu^{15,16,17,18,19,20,21}, A. M. Zanetti⁴⁵, Y. Zeng²⁹, C. Zhou²⁹, S. Zucchelli^{35,36}

CDF Measurement of m_W

compared with previous measurements

Tension: 7- σ discrepancy with Standard Model?

Theoretical Interpretations of W Mass

taking CDF measurement at face value

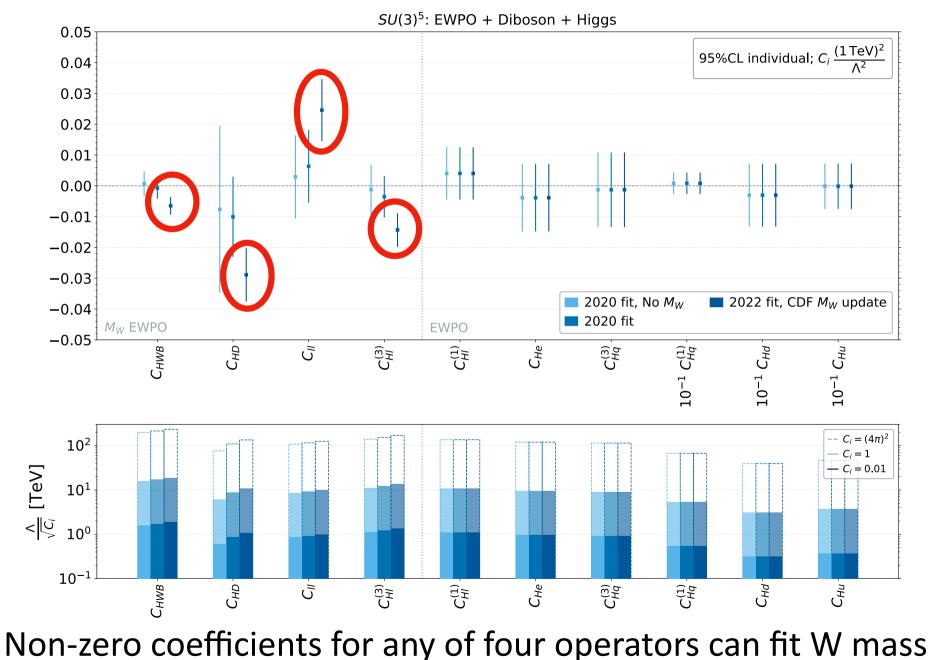
90 papers and counting!

3667 DM		Zhu		GUT, finite group	Wilson			
3693 Inert H		Fan		Extra U(1)	Zhang			
3797 EWPO		Lu	8266	Seesaw	Borah			
3996 Relation	to g-2	Athron	8390	Zee model	Chowdhury			
4183 Axion, ch	-		8406	2HDM	Arcadi			
4191 EWPO	ameleon	Strumia	8440	Beta decay	Cirigliano			
4191 EWPO								1
4202 SUST 4204 EWPO		Yang de Blas	8546	Oblique	Carpenter	4445	2HDM	Botella
	100		8568	Seesaw	Popov			
4286 SUSY GN		Du	9001	2HDM	Ghorbani	1437	2HDM	Kim
4356 SUSY NN		Tang	9029	Stueckelberg	Du			_
4514 non-stan		Cacciapaglia	9031	Leptoquarks	Bhaskar		Braneworld	Barman
4559 RH neutri		Blennow			_		2HDM	Kim
4710 SUSY NN	ISSM	Cao	9376	Triplet	Batra		Dark photon	Thomas
			9477		Cao		Leptoquark+VLQ	He
5031 Seesaw t	riplet	Cheng		Extra U(1)	Zeng	2205	bs anomalies	Li
5085 2HDM		Song		Extra U(1)	Baek	2217	DM + g-2	Dcruz
5260 SMEFT		Bagnaschi		DM fermions	Borah			
5267 Custodial	symm	Paul	5071	Diviterinions	boran	2788	ResBos2	Isaacson
5269 2HDM		Bahl	10120	SMEFT	da Silva			
5283 S&T		Asadi			Cheng	3877	GUT triplet	Evans
5284 Higgs phy	/sics	Di Luzio		Dark photon	0	3917	VLQ	Chowdhury
5285 FlexibleS	USY	Athron		Triplet seesaw	Heeck	3942	PDFs	Gao
5296 S&T, SMI	FT	Gu	10375	FOPT triplet	Addazi	4016	Lepton portal	Kim
5302 D3-Brane		Heckman						
5303 2HDM		Babu	10338	2HDM	Lee	4473	LLP	Giudice
						4824	SO(10) axion	Lazarides
5728 2HDM		Heo		Extra U(1)	Cai		SU(5)	Senjanovic
5760 Georgi-N	lachacek		11755	2HDM	Benbrik		Triplet	Ghosh
5942 Leptoqua		Cheung				5041	mpier	GHOSH
5962 VL quarks		Crivellin	11871	nu-lepton collider	Yang	5610	Coloured scalars	Miralles
5965 Single-fie		Endo	11945	Scotogenic DM	Batra	5010	coloureu scalars	winanes
5975 2HDM + 9		Biekötter	11991	Atomic PV	Tran Tan	0215	SESM	Li
5992 SMEFT	angret	Balkin	12018	2HDM	Abouabid	8215	SESIVI	LI
5552 SIVIEF I		Daikin	12453	Colour-octet	Gisbert	0100	CUCV 221	Dedelerree
COOT New Jaco		K			-	9109	SUSY 331	Rodriguez
6327 Non-loca	SM	Krasnikov	12898	Georgi-Machacek	Chen			
6485 2HDM		Ahn	13027	Extra U(1)	Zhou			
6505 2HDM		Han						
6541 RPV MSS	М	Zheng	13690	RG running	Gupta			
7022 Lepton po	ortal DM	kawamura	5.00758	Flipped SU(5)	Basiouris			
7144 Triplet H		Fileviez						
7144 Thplet H		Fileviez	783	DM	Wang			

SMEFT Operators that can Contribute to W Mass

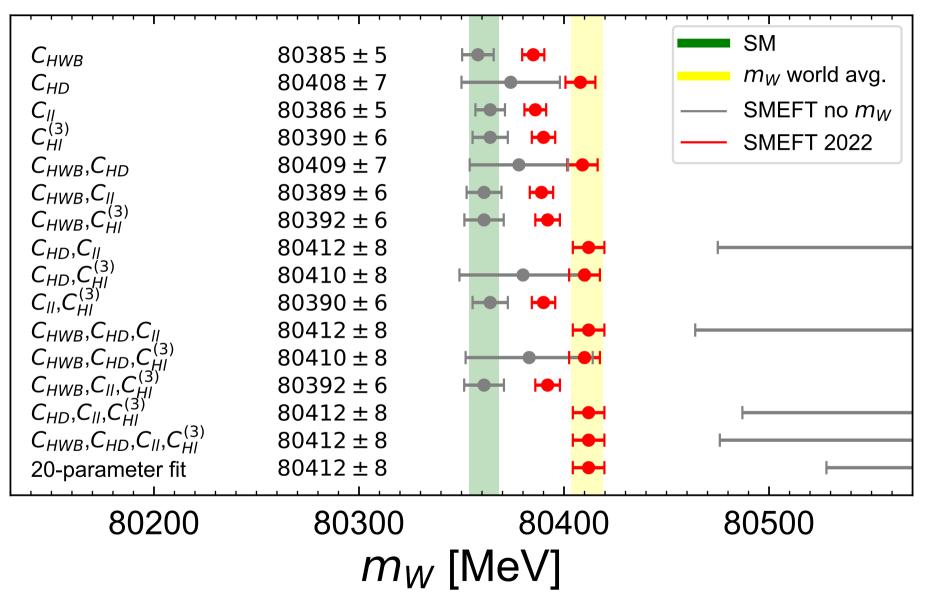
Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H\right)^{\star} \left(H^{\dagger} D_{\mu} H\right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r}\right)$$


• Contributions to W mass

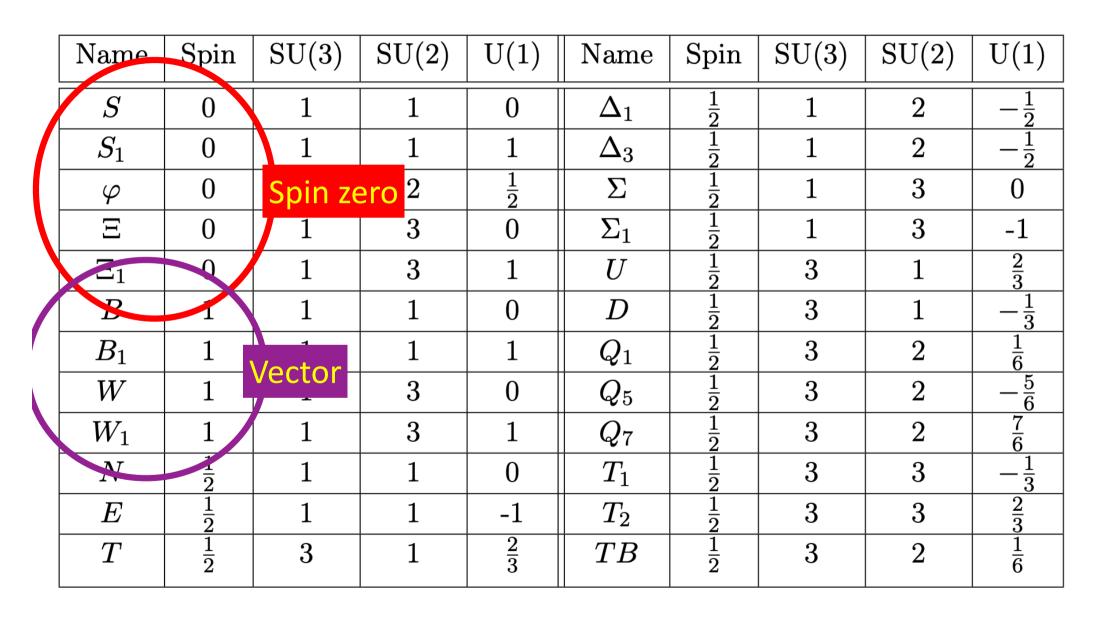
$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

• Contributions to S and T oblique parameters


$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S \quad , \quad \frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$$

SMEFT Fit with the Mass of the W Boson

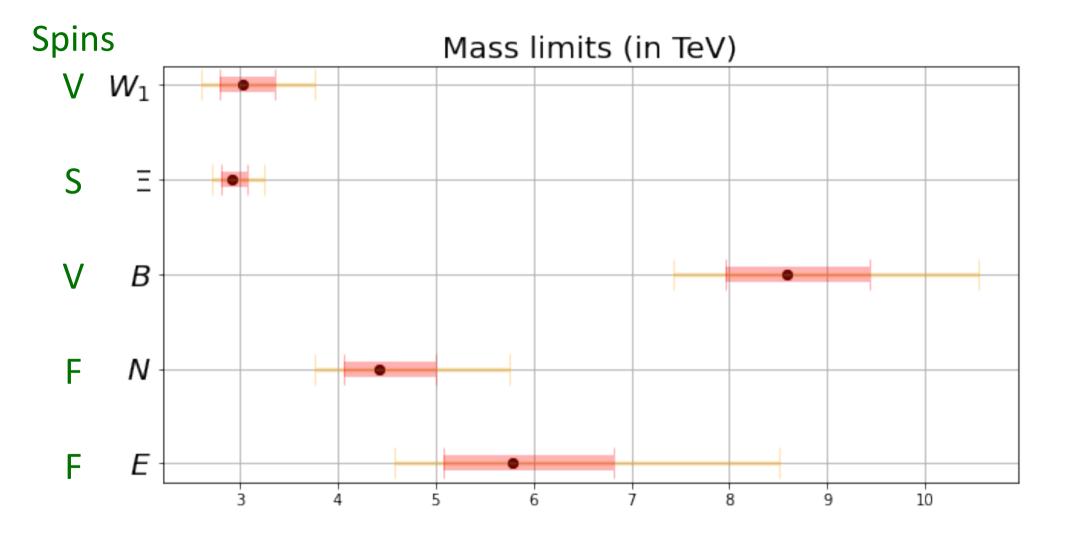
Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260


SMEFT Fits with the Mass of the W Boson

Subsets of four operators can fit W mass

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Extensions of the Standard Model



JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Models that can Contribute to W Mass

Model	C_{HD}	C_{ll}	$C_{H^{\downarrow}}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}	
S_1		1								
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$			
Σ_1	wrong		X	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$			
N			$-\frac{1}{4}$	$\frac{1}{4}$						
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$			
B_1	X					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$	
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$	
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b	
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{ au}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$	
W						$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$	
	O	perato	rs							
	contrik	outing	to m _W	Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.0526						

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Searching for Models Fitting the Mass of the W Boson

- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- Ξ : Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (righthanded) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (righthanded) singlet electron

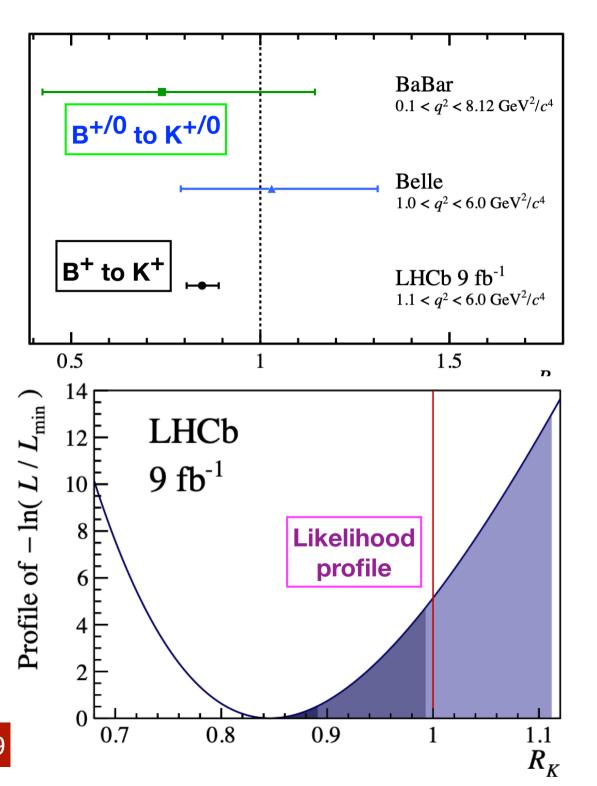
Quo Vadis m_W?

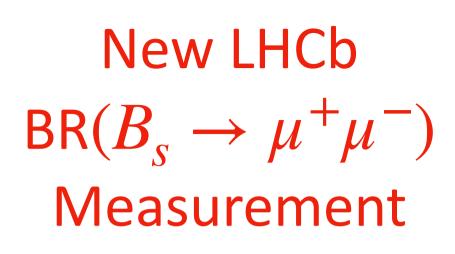
- The jury is still out concerning the experimental measurement
 - Tension with SM, previous measurements

"Extraordinary claims require extraordinary evidence"

- Nevertheless, much theoretical speculation (90 papers!)
- 4 SMEFT operators can increase m_W
- 3 SMEFT operators generated by single field extensions of the SM at tree level
 - Vector bosons W or B, scalar boson Ξ , fermions N, E
- Prospects for the LHC?
- Could also be important loop effects (supersymmetry?)

Known knowns (= SM) Known unknowns (e.g., DM) Unknown unknowns Lepton flavour universality violation in B decays? $g_{\mu} - 2$? Lepton Flavour Universality Violation in $B \rightarrow K\ell^+\ell^-$ Decays?

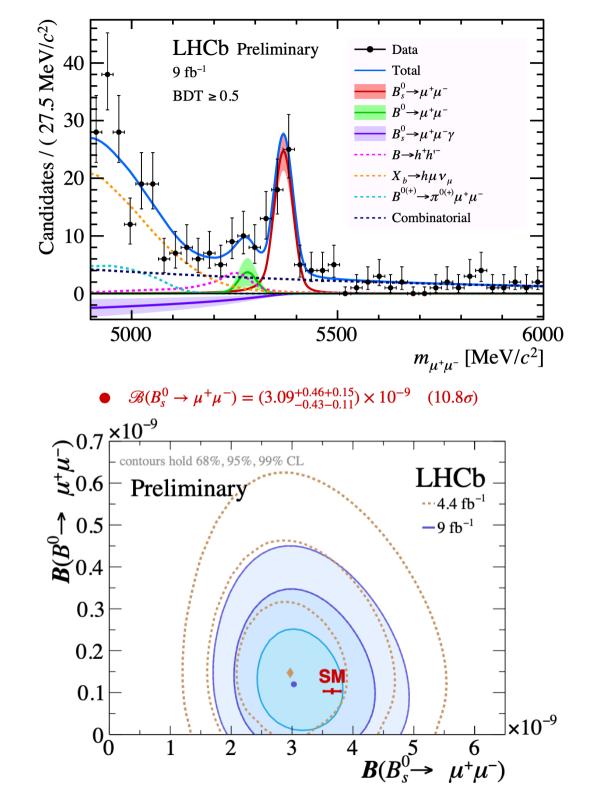

B decays to
$$e^+e^- > \mu^+\mu^-$$

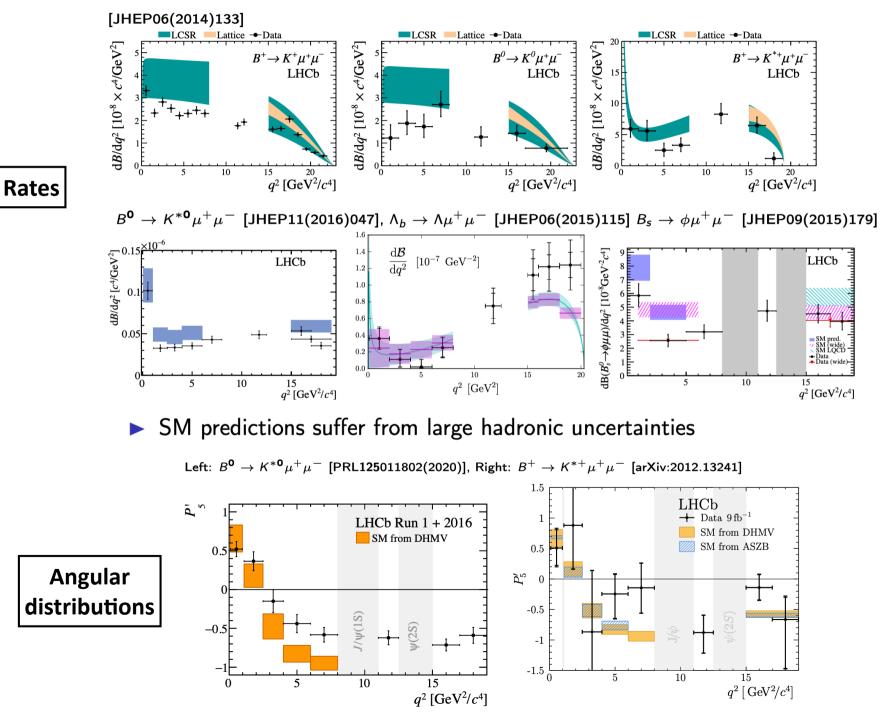

Prima facie violation of lepton universality

SM interactions flavouruniversal

Except for Higgs couplings ∝ masses

LHCb Collaboration, arXiv:2103.11769




Rare decay induced by loop diagrams in SM

Measured value < SM prediction

Further evidence for new physics associated with the muon?

Other Previous Measurements

Flavour Anomalies in b->s Decays

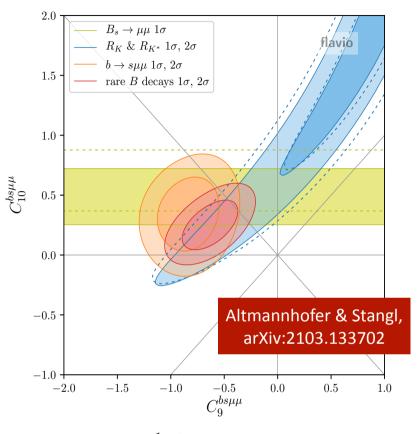
• Parametrize using effective dimension-6 operators:

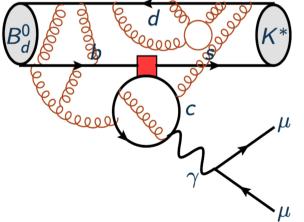
$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$$

• Operators appearing in analysis:

$$\begin{aligned} O_{9}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \,, \\ O_{S}^{bs\ell\ell} &= m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell) \,, \\ O_{P}^{bs\ell\ell} &= m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) \,, \end{aligned} \qquad \begin{aligned} O_{9}^{\prime bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \,, \\ O_{10}^{\prime bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \,, \\ O_{S}^{\prime bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \,, \\ O_{P}^{bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell) \,. \end{aligned}$$

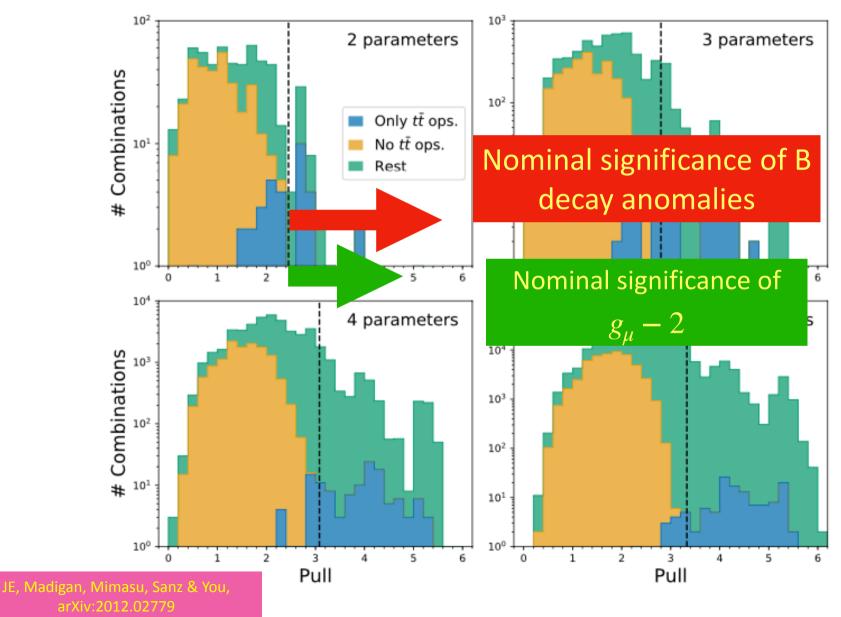
- Evidence for non-zero coefficient of $O_9^{\mu} \equiv (\bar{s}\gamma_{\mu}P_L b)(\bar{\mu}\gamma^{\mu}\mu)$
- Maybe also non-zero coefficient of $O_{10}^{\mu} \equiv (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\mu}\gamma^{\mu}\gamma_{5}\mu)$
- No evidence of operators with electrons


Putting Measurements Together


► Combination all $b \rightarrow s \ell^+ \ell^-$ measurements

- Consistent set of measurements
- $hinspace > 6\sigma$ from SM
- But $B \to K^{(*)}\mu^+\mu^-$ BF and angular observables potentially suffer from underestimated hadronic uncertainties related to $c\bar{c}$ loop contributions

 $\rightarrow B_s \rightarrow \mu^+ \mu^-$ and LFU observables have very clean theory predictions.


- $ho~\sim$ 4.5 σ from SM
- Measurements point to new vector coupling (C_9^{μ})

Model-Independent BSM Survey

Switch on random subsets of 2, 3, 4 or 5 operators

$g_{\mu}-2$: from Dirac and Schwinger to Fermilab and Beyond

MERT

A story of 94 years, 8 experiments and many theorists John Ellis

Volume 116B, number 4

$g_{\mu} - 2$ in Supersymmetry

 One-loop contribution from smuon/neutralino loop

$$\begin{aligned} \Delta(g-2)_{\mu} &= -ab(\cos\alpha\sin\alpha/4\pi^2)(m_{\mu}/m_{\widetilde{G}}) \\ &\times \{1/(1-\eta_1) + 2\eta_1/(1-\eta_1)^2 \\ &+ [2\eta_1/(1-\eta_1)^3] \log\eta_1 - (\eta_1 \leftrightarrow \eta_2)\}, \end{aligned}$$

• where $\eta_i \equiv (m_{s\mu_i}^2/m_{\widetilde{G}}^2)$

• and
$$\mathcal{L} = a\sqrt{2} \operatorname{s}_{\mu} \overline{\mu}_{\mathrm{L}} \widetilde{\mathrm{G}} + b\sqrt{2} \operatorname{t}_{\mu} \overline{\mu}_{\mathrm{R}} \widetilde{\mathrm{G}}$$

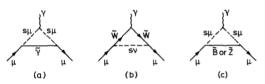
SPIN-ZERO LEPTONS AND THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

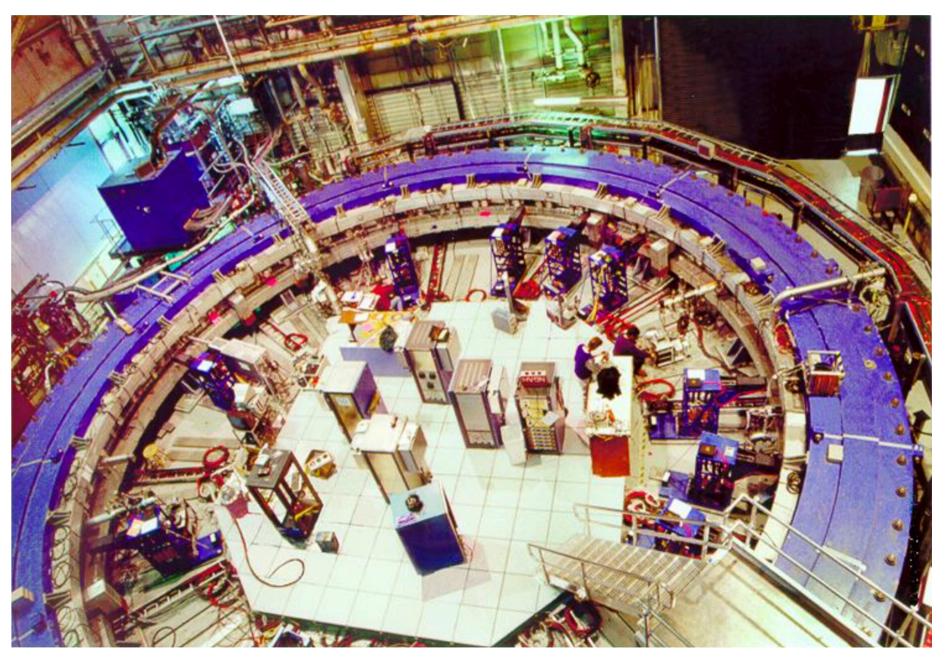
John ELLIS, John HAGELIN and D.V. NANOPOULOS CERN, Geneva, Switzerland

Received 14 June 1982

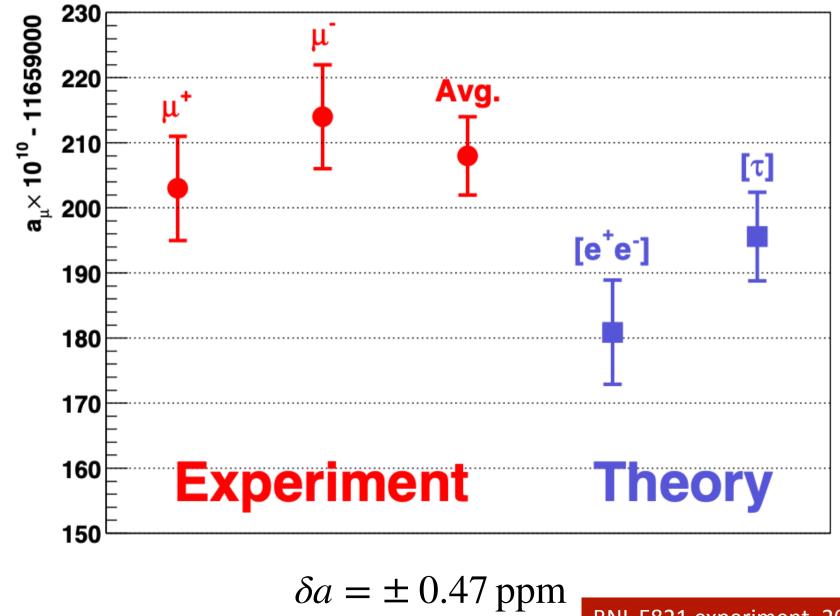
The anomalous magnetic moment of the muon $(g-2)_{\mu}$ imposes constraints on the masses and mixing of spin-zero leptons (sleptons). We develop the predictions of models of spontaneous supersymmetry breaking for the slepton mass matrix, and show that they are comfortably consistent with the $(g-2)_{\mu}$ constraints.

During the present resurgence of interest in supersymmetry broken at low energies [1] new significance is attached to the classical phenomenological playgrounds of gauge theories such as the anomalous magnetic moments of the electron and muon [2], flavourchanging neutral interactions [3-5] parity [6] and CP violation [7,8] in the strong interactions. The three latter phenomena make life rather difficult [3,7] for the most general form of soft supersymmetry breaking, whereas simple models [9-11] of spontaneously broken supersymmetry naturally [3,47] respect the ΔF $\neq 0, P$ and CP violation constraints. As for the anomalous magnetic moments of the leptons, it has long been known that they vanish in an exactly supersymmetric theory [12], and Fayet [2] showed that in his model of supersymmetry breaking $(g-2)_{\mu}$ would be compatible with experiment if the spin-zero muon (smuon) masses were heavier than 15 GeV. Direct experimental searches [13] now exclude the existence of lighter smuons. Fayet's analysis [2] was in the context of a model with a very light photino $\tilde{\gamma}$ (see fig. 1a), and Grifols and Méndez [14] have recently made the interesting observation that his analysis is significantly altered for massive gauginos (see figs. 1b, 1c). They show that there are potentially nontrivial constraints on the smuon masses in models of broken supersymmetry.




Fig. 1. One-loop diagrams contributing to $(g-2)_{\mu}$: (a) essentially massless photino ($\tilde{\gamma}$) exchange, (b) \tilde{W} and sneutrino (sv) exchange, and (c) \tilde{B} or \tilde{Z} exchange.

right transition operator there is a GIM [15]-like cancellation between the smuon mass eigenstates in fig. 1c which provides a potential suppression mechanism. We analyze recent models [10,11] of spontaneous supersymmetry breaking originating in the D and F sectors, respectively. We show that in the former case $(g-2)_{\mu}$ is suppressed by near degeneracy between the smuon mass eigenstates, while in the latter case $(g-2)_{\mu}$ is suppressed by small mixing angles between the leftand right-handed smuons. We close with some remarks about $(g-2)_{e}$ and about parity violation in the strong interactions.


When they examined figs. 1a, 1b and 1c, Grifols and Méndez [14] realized that there was a fundamental difference between the (almost ?) massless $\tilde{\gamma}$ diagram of fig. 1a and the \tilde{W} diagram of fig. 1b as compared to the massive \tilde{B} or \tilde{Z} diagram of fig. 1c. The

BNL Experiment

(1984 - 2003)

Possible Discrepancy with Theory?

BNL E821 experiment, 2001 - 2006

$g_{\mu} - 2$ in Supersymmetry v2: the CMSSM

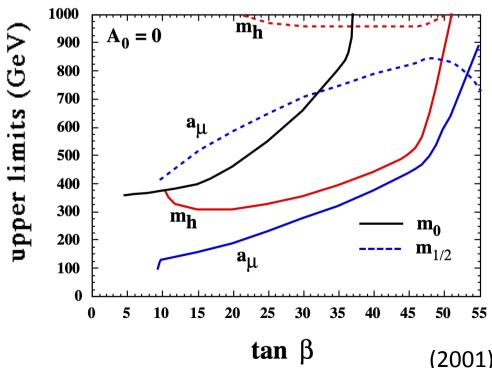
24 May 2001

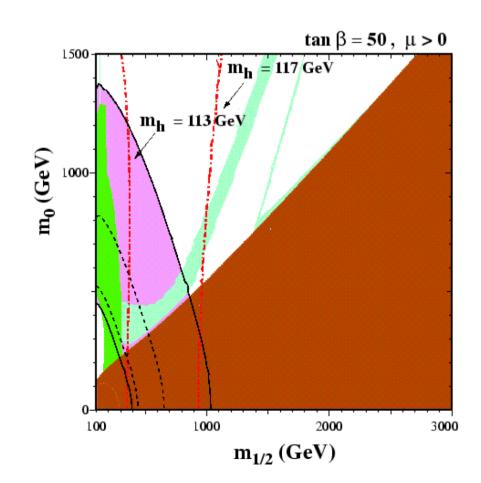
PHYSICS LETTERS B

Physics Letters B 508 (2001) 65-73

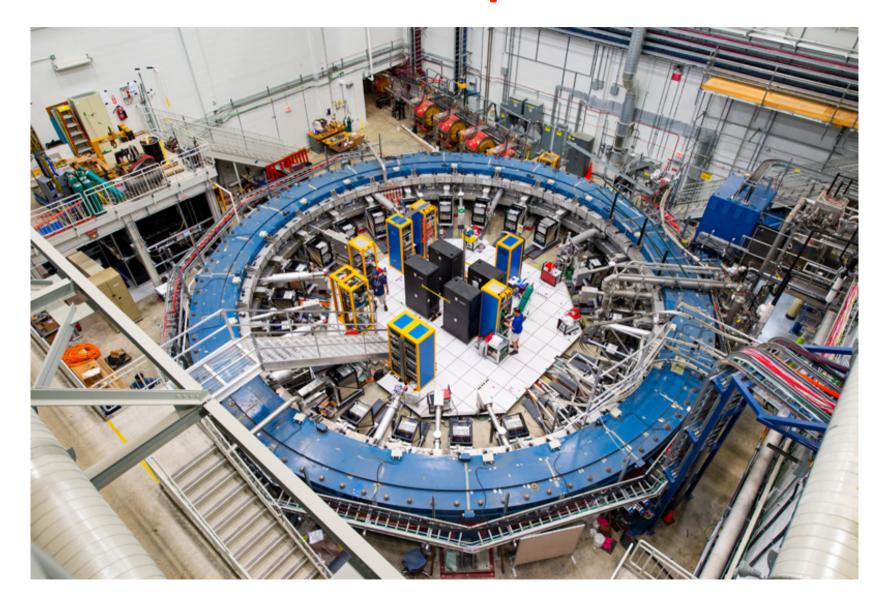
www.elsevier.nl/locate/npe

Combining the muon anomalous magnetic moment with other constraints on the CMSSM


John Ellis^a, D.V. Nanopoulos^{b,c,d}, Keith A. Olive^{a,e}


^a TH Division, CERN, Geneva, Switzerland
 ^b Department of Physics, Texas A&M University, College Station, TX 77843, USA
 ^c Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA
 ^d Chair of Theoretical Physics, Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece
 ^e Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

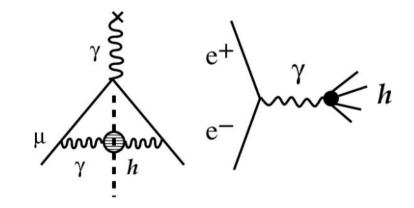
Received 16 March 2001; accepted 10 April 2001 Editor: R. Gatto


Abstract

We combine the constraint suggested by the recent BNL E821 measurement of the anomalous magnetic moment of the muon on the parameter space of the constrained MSSM (CMSSM) with those provided previously by LEP, the measured rate of $b \rightarrow s\gamma$ decay and the cosmological relic density $\Omega_{\chi}h^2$. Our treatment of $\Omega_{\chi}h^2$ includes carefully the direct-channel Higgs poles in annihilation of pairs of neutralinos χ and a complete analysis of $\chi - \tilde{\ell}$ coannihilation. We find excellent consistency between all the constraints for tan $\beta \gtrsim 10$ and $\mu > 0$, for restricted ranges of the CMSSM parameters m_0 and $m_{1/2}$. All the preferred CMSSM parameter space is within reach of the LHC, but may not be accessible to the Tevatron collider, or to a first-generation e^+e^- linear collider with centre-of-mass energy below 1.2 TeV. © 2001 Published by Elsevier Science B.V.

Fermilab Experiment

Does the magnet look familiar?


Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Theory Initiative

- Comprehensive review of calculations of the Standard Model contributions to $g_{\mu} 2$
- Including discussion of the uncertainties
- Particularly in calculation of leading-order vacuum polarisation

Aoyama et al, arXiv:2006.04822

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama ^{1,2,3}, N. Asmussen ⁴, M. Benayoun ⁵, J. Bijnens ⁶, T. Blum ^{7,8}, M. Bruno⁹, I. Caprini¹⁰, C.M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{14,*}, F. Curciarello ^{15,16}, H. Czyż ¹⁷, I. Danilkin ¹², M. Davier ^{18,*}, C.T.H. Davies ¹⁹, M. Della Morte ²⁰, S.I. Eidelman ^{21,22,*}, A.X. El-Khadra ^{23,24,*}, A. Gérardin ²⁵, D. Giusti^{26,27}, M. Golterman²⁸, Steven Gottlieb²⁹, V. Gülpers³⁰, F. Hagelstein¹⁴, M. Hayakawa^{31,2}, G. Herdoíza³², D.W. Hertzog³³, A. Hoecker³⁴, M. Hoferichter 14,35,*, B.-L. Hoid ³⁶, R.J. Hudspith ^{12,13}, F. Ignatov ²¹, T. Izubuchi ^{37,8}, F. Jegerlehner ³⁸, L. Jin ^{7,8}, A. Keshavarzi ³⁹, T. Kinoshita ^{40,41}, B. Kubis ³⁶, A. Kupich ²¹, A. Kupść ^{42,43}, L. Laub ¹⁴, C. Lehner ^{26,37,*}, L. Lellouch ²⁵, I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M.K. Marinković^{46,47} P. Masjuan^{48,49}, A.S. Meyer³⁷, H.B. Meyer^{12,13}, T. Mibe^{1,*}, K. Miura^{12,13,3} S.E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{12,*}, V. Pascalutsa¹², M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶, C.F. Redmer¹², B.L. Roberts^{57,*}, P. Sánchez-Puertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷, D. Stöckinger⁵⁸, H. Stöckinger-Kim⁵⁸, P. Stoffer⁵⁹ T. Teubner^{60,*}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13}, G. Venanzoni⁶¹, G. von Hippel¹², H. Wittig^{12,13}, Z. Zhang¹⁸, M.N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,65}, O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C.A. Dominguez⁶⁷, A.E. Dorokhov⁶⁸, V.P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C.S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J.R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A.S. Kronfeld²⁴, J. Laiho⁷⁵, S. Leupold⁴², P.B. Mackenzie²⁴, W.J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E.T. Neil⁷⁷, A.V. Nesterenko⁶⁸, K. Ottnad ¹², V. Pauk ¹², A.E. Radzhabov ⁷⁸, E. de Rafael ²⁵, K. Raya ⁷⁹, A. Risch ¹², A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E.P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸², A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A.S. Zhevlakov⁷⁸

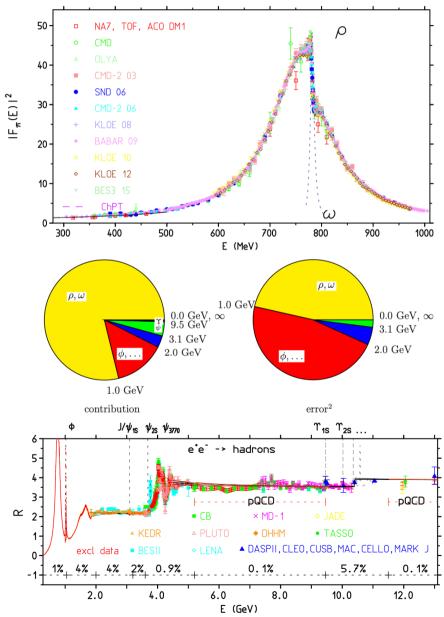
¹Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
²Nishina Center, RIKEN, Wako 351-0198, Japan

³ Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan ⁴ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom ⁵ LPNHE, Sorbonne Université. Université de Paris, CNRS/IN2P3, Paris, France

E-mail address: MUON-GM2-THEORY-SC@fnal.gov (G. Colangelo, M. Davier, S.I. Eidelman, A.X. El-Khadra, M. Hoferichter, C. Lehner, T. Mibe, A. Nyffeler, B.L. Roberts, T. Teubner).

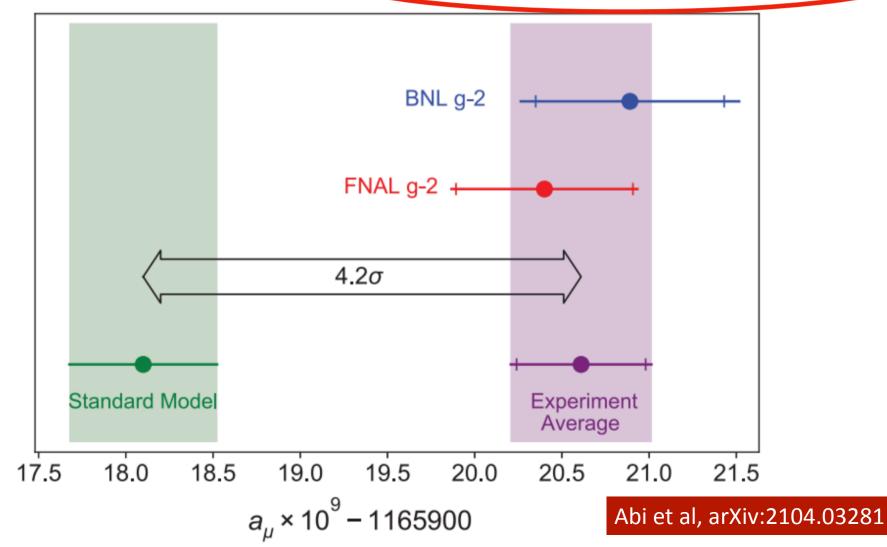
https://doi.org/10.1016/j.physrep.2020.07.006

0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons org/licenses/by-nc-nd/4.0/).


⁸ Corresponding authors

Hadronic Vacuum Polarization

- Most important contribution is from low energies ≤ 1 GeV, dominated by ρ and ω peaks, taking account of interference effects
- Uncertainties dominated by ρ and ω region, and by region between 1 and 2 GeV (ϕ , etc.)
- High energies under good control from perturbative QCD


$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= 693.1(4.0) × 10⁻¹⁰.

Aoyama et al, arXiv:2006.04822

Fermilab Measurement

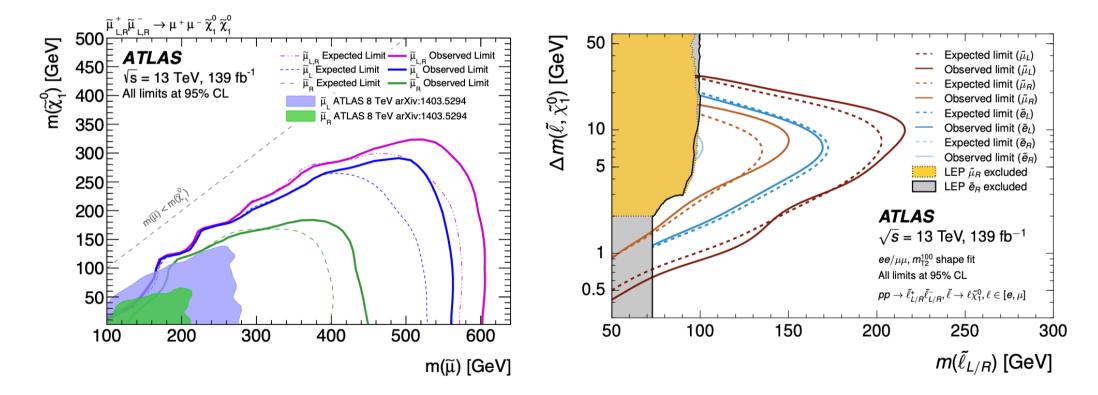
FNAL result: $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm) Combined result: $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm) Difference from Standard Model: $a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$

Interpretation Papers

2104.05685 Vector LQ	В	Du		890	Radiative seesaw		Chiang
5656 L_\mu - L_\tau	DM	Borah		2103.13991	Scalar LQ	B, H decays	Greljo
5006 B_q - L_\mu	В	Cen	Leptoquarks	2012.11766	DM		D'Agnolo
4494 LFV	LFV	Li		2012.07894	Axions		Darmé
4503 Pseudoscalar	DM, H decays	Lu	Extra U(1)	1812.06851	Charmphilic LQ		Kowalska
4456 2HDM	DM	Arcadi					
3542 B-LSSM	H decays	Yang	Extra Higgs	2104.04458	GUT-constrained SUSY	DM	Chakraborti
3701 Leptophilic spin 0	H factory	Chun		5730	LQ + charged singlet	B, Cabibbo	Marzocca
3839 SUSY	HL-LHC	Aboubrahim	Supersymmetry	6320	L-R symmetry		Boyarkin
3691 Survey	DM, LHC	Athron		6858	L_\mu - L_\tau	\nu masses	Zhou
3705 Seesaw	g_e	Escribano	Axion	6854	D-brane	U(1), Regge	Anchordoqui
3699 Gauged 2HDM	В	Chen		6656	vector LQ	В	Ban
3239 SUSY	Gravitino DM	Gu		7597	SUSY	LHC, landscape	Baer
3284 NMSSM	DM	Cao		7047	3HDM	Fermion masses	Carcamo
3262 GUT-constrained SUSY	DM, LHC	Wang		7680	Leptophilic Z'	Global analysis	Buras
3292 MSSM	CPV	Han		8289	Custodial symmetry	Light scalar + pseudoscala	ar Balkin
3296 lepton mass matrix	Flavour	Calibbi		9205	U(1)D	Neutrino mass	Dasgupta
3280 Z_d	Cs weak charge	Cadeddu		8819	Lepton non-universality	Naturalness	Cacciapaglia
3334 E_6 3-3-1	H stability	Li		8640	2x2x1	Higgses, heavy nus	Boyarkina
3242 \mu-\tau-philic H	\tau decays, LHC	Wang		8293	Multi-TeV sleptons in FSSM	Extended H, tau decays	Altmannshofe
3259 Anomaly mediation	DM	Yin		10114	SO(10)	Yukawa unification	Aboubrahim
3245 pMSSM	DM, fine-tuning	Van Beekveld		7681	U(1)B-L	DUNE	Dev
3274 NMSSM	DM, AMS-02 pbar	Abdughani		10324	Gauged lepton number	Dark matter	Ma
3290 MSSM	DM	Cox		10175	2HDM	Lighter Higgs?	Jueid
3367 2HDM	V-like leptons	Ferreira		11229	LQ	Matter unification	Fileviez
3267 Axion	Low-scale	Buen-Abad		15136	U(1)	HE neutrinos, H tension	Alonso
3340 L_\mu - L_tau	AMS-02 positrons	Zu					
3282 ALP	V-like fermions	Brdar		2105.00903	Anomalous 3-boson vertex	W mass	Arbuzov
3301 Lepton portal	DM	Bai		7655	U(1)T3R	RK(*)	Dutta
3276 Dark axion portal	Dark photon	Ge		8670	Leptoquark	nu mass, LFV	Zhang
3491 GmSUGRA	LHC	Ahmed					
3227 2HDM	LHC	Han					
3302 SUSY	small \mu	Baum					
3238 Scalar	DM, p radius	Zhu		n.			
3489 \mu \nu SSM	B, H decays	Zhang					
3287 pMSSM	ILC	Chakraborti		n			
3228 DM	B, H decays	Arcadi					

What lies beyond the Standard Model?

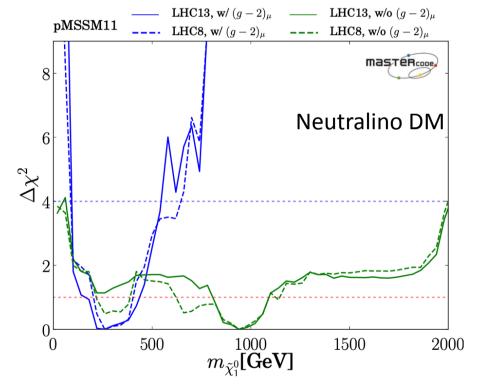
Supersymmetry


• Stabilize electroweak vacuum

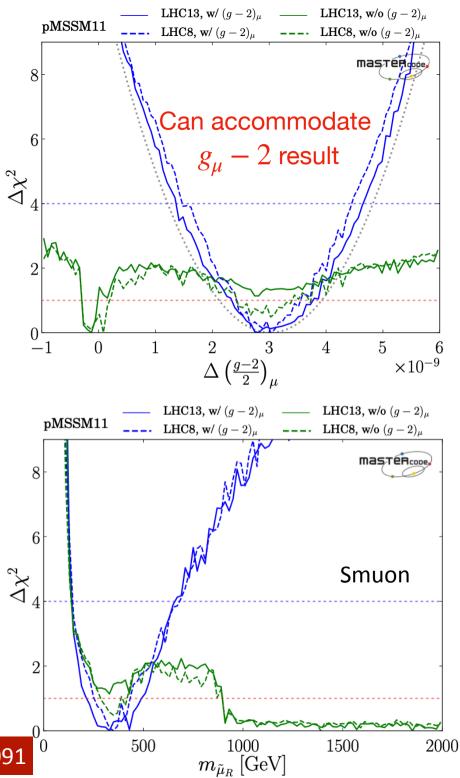
New motivations from LHC

- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models
- Successful predictions for couplings
 - Should be within few % of SM values
- Naturalness, GUTs, string, dark matter, $g_{\mu} 2$, ...

LHC vs Supersymmetry


• LHC does not exclude (relatively) light electroweakly-interacting particles, e.g., sleptons

• LHC favours squarks & gluinos > 2 TeV (but loopholes)


$g_{\mu} - 2$ in Phenomenological Supersymmetry (pMSSM11)

No relation between squark/gluino masses and slepton/neutralino masses

No problem accommodating BNL/FNAL result Neutralino DM, smuon masses $\,\sim\,300/400~{\rm GeV}$

MasterCode, E. Bagnaschi, ..., JE et al, arXiv:1710.11091

Summary

Visible matter

Standard Model

Higgs physics? Dark Matter? Muon magnetic moment? **B** decays? m_W ?