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Outline

Today: Why and how we look for BSM physiecs

Disclaimer
- Why are we looking beyond the Standard Model?

- How do we search for new physics?
- Anomaly-driven searches.

BSM searches at colliders covers a
vast amount of experimental and
theoretical work - not possible to cover

everything in two 40 minute talks!

There is also a lot of personal bias in
this talk! Due to the limited time | have
chosen to focus more on areas |
personally find interesting (and/or
have expertise in).

Tomorrow: New physics in the scalar sector

- Additional Higgs bosons.

- Using the Standard Model Higgs boson as a tool to
search for new physics.

- Exotic decays of the Higgs boson
- Higgs self-coupling as a probe of new physics.
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The Standard Model

Fermions
3 generations of
quarks and leptons
- spin % particles
ﬁ W+e L i
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The Standard Model

Fermions

3 generations of
quarks and leptons
- spin % particles

Spin 1 particles
corresponding to 3
different interactions -

electromagnetic, weak,

and strong forces.

Higgs boson
Spin O particle
responsible for mass
generation
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Gravity?
Mediated by the
‘graviton’?
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energy?

96% of the universe is unaccounted
for - what is it made of?
(Covered in C. Doglioni’s “Dark
Matter at colliders” lectures.)



Breaking the Standard Model

Gravity?
Mediated by the
‘graviton’?

Higgs mass?

Why is the Higgs boson so
ight? |s excessive fine-tuning
a real problem, or just
aesthetics?
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Breaking the Standard Model

Gravity?
Mediated by the
‘graviton’?

Matter-antimatter

asymmetry
Why do we live in a matter-
dominated universe? Not
enough CP violation in the

O

quark sector for baryogenesis.

Dark matter and dark

energy?
96% of the universe is unaccounted
for - what is it made of?
. o (Covered in C. Doglioni’s “Dark
Higgs mass Matter at colliders” lectures.)
Why is the Higgs boson so
ight? |s excessive fine-tuning
a real problem, or just
aesthetics?
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Beyond the Standard Model

RADIONS “”"'\g%»

WARPED EXTRA DIMENSTONS

®
Models for new physics try to
COMPOSTTE LGS explain these phenomena by
introducing new particles or
interactions — search for
evidence of these at colliders
KALUZA-KLETN
GRAVLTONS
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Resonance searches

27

Many BSM theories predict narrow Excited
resonances at the TeV mass scale. quarks/gluons

X7
» Clear bump’ over SM background. Extra- ’.
+ Almost any combination of 2 SM dimensions

(RS graviton)

particles can form a resonance in
BSM models.

/
Extended //
gauge ~ —

symmetry
/
Technicolour

Composite

Higgs qq



Resonance search - simple example
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Resonance search - simple example
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Steps in a BSM search analysis

1. Choose a topic.

. Usually theory-motivated (see next slides!).
II. Sometimes do “generic” searches that look for deviations from SM predictions in a given final state.




Steps in a BSM search analysis

1. Choose a topic.

. Usually theory-motivated (see next slides!).
Ii. Sometimes do “generic” searches that look for deviations from SM predictions in a given final state.

2.Decide which production/decay mode(s) you'll look at.

. Usually some trade off between cross-section/branching ratio, how “clean” the final state is (i.e. can
you reject a lot of background). O

Large
branching Clean final
ratio state







Case study

In season 21, episode 16 of The Simpsons,

Homer has decided to do a PhD in particle

physics on the ATLAS experiment at CERN.
He needs to pick a thesis topic.

The LHC has just started taking data, and
everyone's excited about finding a new
particle called the Higgs boson.

That sounds like fun!
But the Higgs boson
can be produced and
decay in SO many
different ways... which
channel should |
choose?
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Choose a channel

. SM Higgs production
10-! s LHC 8 1:. I S S U B B B I B B G e B |IIE§
5 lfb] | AR N 15
| > 7743
10 ; — B . %
| 8 107 1TT g9 — O
. 5 =7 |
. CC - O
10" B W, i
| qq — Wh i |
B | 10°F =
ﬁ — i v 4 :
TeV4LHC Higgs working group —
l N 10'3 ] | | | ] | ] I | | | ] ] I ] |
100 500 300 400 500 100 120 140 160 180 200
m, [GeV] M, [GeV]
Choose production and decay modes that maximise the number of Higgs bosons?
— Gluon-fusion prOdUCtiOﬂ, deCay (@) b—quarks (Homer has a hunch that the Higgs will be light ) ).
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ooH— hh?

X b-jets are probably the most difficult
objects to identify in the detector.

X Gluon-fusion doesn't really provide any
distinctive signature.

X _Jet backgrounds are many orders of
magnitude larger than your H—bb signal.

X Poor mass resolution of the bb pair.




Choose a channel

. SM Higgs production
10-! s LHC 8 1:. I S S U B B B I B B G e B |IIE§
5 (fb] | 8 [ bb TN 13
| 2 77— ¢
10 4; — B . %
| 8 10-1 L TT g9 — O
§ — 7 f
z' CCC - O
10" B W, i
| qq — Wh i |
A B | 10°F =
ﬁ ! VY Zy ]
TeV4LHC Higgs working group —
l N 10'3 | | | | ] | ] I ] | ] ] ] I ] |
100 ” 00 300 400 00 100 120 140 160 180 200
m, [GeV] M, [GeV]
Need more “distinctive” signature...
— Gluon-fusion production to keep large cross-section, but decay to photons.
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v/ Photons are “easy” to identify in the
detector.

v/ Small backgrounds.

v/ Excellent mass resolution.




ooH— yy : a winning combination!
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H—11?

What about
H—//—4e/eeyu/4u?

o
% 1:'|'_"|"'| """""""
v/ Moderate branching ratio to ZZ. g€ | b ZZ g
v/ Z bosons can decay to electrons and é 10_1:_“; 99 )
muons that are easy to identify. &
v/ Small backgrounds. :
107 F E
v/ Good mass resolution. :
vy o &
X BR(Z—ee/pp) = 3.3% = BR(ZZ—4e/
eeuu/4u) = 0.5% 10°—700 720 140 160 180 200
M, [GeV]
30 4

...



H— LI : another winner!

Events / 5 GeV

Data - Background
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But... what about H—hb?

0S5 SM Higgs production

o [fb]

LHC

ggF -
H—bb :

bb—h

qb — qth

TeV4LHC Higgs working group

100 200 300 460 SE)O
m, [GeV]
- Search for events where the Higgs is produced in
association with a leptonically decaying W or Z
boson to get an extra handle to reject backgrounds.

VH (H—bb)
with machine
learning

» Use BDTs to improve signal-background

separation. (See T. Golling's lectures for more on
machine learning.)
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6 years after the Higgs discovery (yy + ZZ channels), BDTs in 6 different

signal regions, 3 x more data, Vs increase from //8 TeV = 13 TeV. .
+


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/

Was it worth it?!

Yes!
. . py ¥ (D 1_ [ | | | | I I | | | | | : ! i i i | | I :E
. @ g _
During the Higgs “search phase™ s b~ i .
» We didn't know its mass... > T 77 -8 ®
£ I 13
- .or if it would be SM-like... € 0Lt ol _
. R :
- ..orif it would even be there at all! CC_ j
107 :
i VY Zy |
10"3 ] ] ] ] ] | ] I | | ] ] ] | ] |
100 120 140 160 180 200
M, [GeV]
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Was it worth it?!

Yes!

e [Tanas praimnary |
| | = TE Vs-13Tev,245-139 10" 7

During the Higgs “search phase™ S F my=12509GeV - .
= |z N [ SM Higgs boson W .
. ) . 10 & =

. We didn’t know its mass.. - UE = o
- ...orif it would be SM-like... 102 = e _g
- ..or if it would even be there at alll T -
e mq(m,,) used for quarks -
107 E =
And |ater E‘ _::'::I -+ -+ -+ :_
. . . 1.2F —~
- Crucial to establish that the Higgs does decay to S ; I i { :
b-quarks (as predicted by the SM). o I i
. . . 0.8 -
- Test mass hierarchy of Higgs couplings. N

107 1 10 10°
Particle mass [GeV]
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Steps in a BSM search analysis

1. Choose a topic.

. Usually theory-motivated (see next slides!).
iI. Sometimes do “generic” searches that look for deviations from SM predictions in a given final state.

2.Decide which production/decay mode(s) you'll look at. o
. Usually some trade off between cross-section/branching ratio, how “clean” the final state is (i.e. can you reject a lot of
background). ®
3.What is the final state? Implement "Preselection” cuts.
.. Typically demand that the events contain the same objects as you would expect in your signal that you can then use as a
starting point for defining regions which are enriched in signal, and others that are enriched in backgrounds.
iI. Ensure the selection is loose enough that you can estimate background processes, but tight enough that your data
volume is manageable.
36 4
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1. Choose a topic.

. Usually theory-motivated (see next slides!).
iI. Sometimes do “generic” searches that look for deviations from SM predictions in a given final state.

2.Decide which production/decay mode(s) you'll look at. o
. Usually some trade off between cross-section/branching ratio, how “clean” the final state is (i.e. can you reject a lot of

background). ®
3.What is the final state? Implement "Preselection” cuts.
.. Typically demand that the events contain the same objects as you would expect in your signal that you can then use as a
starting point for defining regions which are enriched in signal, and others that are enriched in backgrounds.
iI. Ensure the selection is loose enough that you can estimate background processes, but tight enough that your data
volume is manageable.
4. Determine preselected sample’s composition using MC and data to understand contributions.
. Multijet background almost always extracted from data.
iI. Also need to correct MC for real-life data conditions.
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Steps in a BSM search analysis

1. Choose a topic.

. Usually theory-motivated (see next slides!).
iI. Sometimes do “generic” searches that look for deviations from SM predictions in a given final state.

2.Decide which production/decay mode(s) you'll look at. o
. Usually some trade off between cross-section/branching ratio, how “clean” the final state is (i.e. can you reject a lot of

background).

3.What is the final state? Implement "Preselection” cuts.
.. Typically demand that the events contain the same objects as you would expect in your signal that you can then use as a
starting point for defining regions which are enriched in signal, and others that are enriched in backgrounds.
iI. Ensure the selection is loose enough that you can estimate background processes, but tight enough that your data

volume is manageable.

4. Determine preselected sample’s composition using MC and data to understand contributions.

. Multijet background almost always extracted from data.
. Also need to correct MC for real-life data conditions.

5.As statistics increase, more difficult, since mis-modelings not hidden by statistical uncertainties

anyrmaore
. Mis-modelings often show up in tails...




30 what BSM physics should | look for?

» Saw before that there are many phenomena still not understood - most
searches are motivated by trying to address one (or more) of these problems.

- Additionally, precision measurements of SM processes often provide key

insight into where new physics might be hiding. ®
» Helps guide where to focus efforts for new physics searches.

CAUTION: Anomalies in measurements are not proof of new
physics! But... they can provide useful clues about where to look.




Case study: lepton flavour universality




Lepton universality

- Standard Model pred
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eptons to all types o
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Muon g-2

Measurement of muon anomalous magnetic moment in 4.20 tension
with SM prediction...

BNL. 2
o N ®
FNAL g-2
®
Experimental
Average
4 126 >
: o :
White Paper
Standard Model
175 18 185 19 195 20 20.5 21 21.5
9
a, x 10° — 1165900 P



Muon g-2

.. but newer theory prediction that uses a different approach is only
1.50 away from measurement.

BNL’
-2
° : ®
FNAL g-2
(155 >
: @ | b @ |
BMW, lattice QCD Experimental
Standard Model Average
4 125 >
: & !
White Paper
Standard Model
17.5 18 18.5 19 195 20 205 21 21.5
9
au><10 — 1165900 B 4



Muon g-2

.. but newer theory prediction that uses a different approach is only
1.50 away from experimental average.

@
BNL g-2
® = ®
FNAL g-2 Too early to get excited, but
intriguing when considered in
< 150 > context with the other flavour
| " | = J. anomalies...
BMW, lattice QCD  Experimental Interesting to see how this will
Standard Model AVhiage develop in the coming years,
with more data/improved
< 420 > experimental methods.
: ] :
White Paper
Standard Model
175 18 185 19 195 20 205 21 21.5
9
a, x 10° — 1165900 “ 4



Flavour anomalies

- Small-to-moderate deviations from SM predictions in many measurements
probing lepton universality.

- e.g. R(K),R(K*) combination deviates from SM by ~2-2.50.

BR(B — K®putpu™)
R(IK™) = o
BaBar (E) BR(B — K®ete™)

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..
2

0.1 < g* < 8.12 GeV/¢*

4

Belle

! 4 ®

1.0 < ¢* < 6.0 GeV7/ e - vl .
= SM -
— 1 O
LHCb 3 b’ : :
1.0 < g% < 6.0 GeV7/¢* . .
H H
H H
- H
LHCb 5 fb”' : 5 :
1.1 < g2 < 6.0 GeV¥ - - -
| : B -
LHCb 9 fb . p -
1.1 < ¢* < 6.0GeV/c? " >

4 4

...lllllllllllllllllllllllllllllllll“
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Flavour anomalies

- R(D),R(D*) combination deviates from SM by ~4o.

* O
_ p(pty — BR(B = D™ ry)
x® BaBar, PRL109.101802(2012) ( ) — O
: * * LU, 2 _ . . *
Q 0.5 Belle, PRD92,072014(2015) Ay~ = 1.0 contours B R(B — DI )/U/ )
Y LHCb, PRL115,111803(2015) e L
045 Belle. PRD94.072007(2016) o Average of SM predictions
. BellePRL1]8211801(2017) R(D)=()299i00()3 “IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..‘
LHCb, PRL120.171802(2018) R(D*) = 0.258 + 0.005 o v, .
0.4 :  SM :
- .
0.35 - -
. - + T+ g
[ |
- |14 .
[ |
0.3 - .
H — [
- b > C -
H % [
0.25 - B D /D" =
[ |
| Symmer 2018 -‘ q q l.
0.2 P()2) = 74% ., K
..Illlllllllllllllllllllllllllllllll“
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Flavour anomalies

- R(D),R(D*) combination deviates from SM by ~4o.

—
X X O
A 05 BaBar, PRL109,101802(2012) , R(D(*)) — BR(B — D( )TV)
- Belle. PRD92,072014(2015) Ay~ = 1.0 contours o
% LHCb, PRL115.111803(2015) BR(B — D(*)/“/) °
0.45 Belle. PRD94.072007(2016) c Average of SM predictions
Belle, PRL118,211801(2017) R(D) = 0.299 + 0.003
LHCb. PRL120.171802(2018) R(D*) = 0.258 + 0.005 0“"“........""""""""""""
0.4 ' | : "
-  BSM? & i .
0.35 - ' :
. [ |
. [ |
0.3 : :
. [ |
. [ |
. [ |
0.25 = b - c '
- B --- > C -
_HFLAV 2% g D/D" -
0.2 S Signmepa01a" : q -
P()%) = 74% % -
P ) 4
. ./
()2 03 04 05 06 .llIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“’
R(D)
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Possible explanation: Leptoquarks

- Motivated by many similarities
between quarks and leptons (mass
nierarchy, charge cancellation etc).

- Similarities between quarks and
leptons suggest a possible link
between the two sectors.

— Leptoquarks: Hypothetical
particles which mediate quark-
lepton transitions.

24th May 2022
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Leptoquarks a la mode

SEARCH RESULTS FOR “LEPTOQUARK" PAPERS ON INSPIRE, BY YEAR

1976 2022



Leptoquarks a la mode

SEARCH RESULTS FOR “LEPTOQUARK" PAPERS ON INSPIRE, BY YEAR

1976

1997: H1 and ZEUS collaborations (HERA
accelerator) make measurements of
electron-proton scattering and both see
(mild) excesses of events with large Q2.

2022

/P

Nys.C/4:191-206,199/

/.P

nys.C/4:20/-220,199/


https://arxiv.org/abs/hep-ex/9702012
https://arxiv.org/abs/hep-ex/9702015

Leptoquarks a la mode

SEARCH RESULTS FOR “LEPTOQUARK" PAPERS ON INSPIRE, BY YEAR

@
1976 2022
Excesses are diluted/disappear once
more data is analysed.
Direct searches for leptoguarks at HERA
and the Tevatron yield null results.
b1 4



Leptoquarks a la mode

SEARCH RESULTS FOR “LEPTOQUARK" PAPERS ON INSPIRE, BY YEAR

O
1976 2022
Belle and BaBar observe ~30
deviations from SM predictions
In measurements of Rp
52 4



Leptoquarks a la mode

SEARCH RESULTS FOR “LEPTOQUARK" PAPERS ON INSPIRE, BY YEAR

©
1976 2022
More measurements from LHCDb,
providing even stronger evidence
for lepton non-universality.
53 4



Leptoquarks searches at the LHC

- Can be scalar (spin 0) or vector (spin 1).
- Fractional electric charge: |g| = %5 (up-type) or ¥3 (down-type)

- Pair-production dominant at LHC, but single LQ production
important at very high masses.

- Decays to a lepton and a quark: LQ—=#%q, LQ—VvQ

- Models where the LQ decays to third generation particles (or g
cross-generational decays, e.g. LQ—ub) favoured theoretically.

b [
i Reminder: need to be able Ve T b
i to mediate this process in :
order to explain it
i * ot > ¢ b/
q q LQ
..... ’ 9
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Leptoquarks searches at the LHC

Many different possible decays, depending on the charge of the leptoquark:
» Up-type 3rd generation: LQ—tv and/or LQ—DbT

* Down-type 3rd generation: LQ—tt and/or LQ—bv +
1 pp — LQ5LQ3, all contours at 95 % confidence level March 2022 1 pp — LQgLQg, all contours at 95 % confidence level March 2022
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Leptoquarks searches at the LHC

IIII

No interesting excesses in the data, but

» Single vs. pair-p
- Vector vs. scala

rnen p ﬂenomenology:

roduction

I~

» Coupling strength of LQ to lepton-quark

* Mass

.. and considering all permutations of
decays to [e,Ve U,V T,V —|u,d,s,c,b 1]
vields many different final states.

24th May 2022
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Leptoquarks searches at the LHC

No interesting excesses in the data, but
rich phenomenology:

- Single vs. pair-production ‘ , O

- Vector vs. scalar  IFYOU HAVEN'T FOUND

» Coupling strength of LQ to lepton-quark

- Mass \ " YET, KEEP I.OOKING

STEVE JOBS

.. and considering all permutations of
decays to [e,Ve U,V T,V —|u,d,s,c,b 1]
vields many different final states.

TTTTTTTTTTTTT . OV
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Heavy gauge hosons

Flavour anomalies could also be explained by the existence ot additional
gauge bosons that have flavour-dependent coupling.

More generally, predicted by many models.

24th May 2022 08 4
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Low mass '—4p

- Light Z' boson couples only to 2nd and 3rd generation leptons.
- Can explain flavour anomalies, p(g-2), dark matter, neutrino Z
masses, and more.

- /' produced through radiation in a Drell-Yan process.

» Search in 4 muon final state. 1
* 4-1 Invariant mass = Z mass.

- Combinatorial challenge to choose which two muons coming fromthe Z. Q)
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http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-18-008/

Testing lepton universality in W decays

Nature Physics 17, 813-818 (2021)

Taus have a relatively long

lifetime - muons originating from & F T T T T
. . S - ATLAS ¢ Data ]
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Extended Higgs sector

Higgs bosons interaction strength proportional to mass — possible link to flavour anomalies?

The Higgs boson is the only Spin 1 particle in the SM, but many BSM theories predict there should
be additional Higgs bosons.

Higgs cross-section is small and many production/decay modes very challenging to probe — still
plenty of room for new physics that interacts with the Higgs to be hiding.
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Extended Higgs sector

——
Higgs bosons interaction strength proportional to mw
The Higgs boson is the only Spin 1 e SM, but ﬁ“ﬁ Wishould
M ry challenging to
Iggs to be hidi

be additional Higgs bosons.

Higgs cross-section is small and ma\y pro
plenty of room for new physics that g\teracts
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Revisiting the proton

Simplified picture of a proton:

up quark

e 3 primary quarks

/ \ gluons e 2 up-quarks ®
C )

e 1 down-quark

S

. |\/'/—\\ //\k/. //
Proton l/

down quark up quark

C” “3 | e Quarks are bound together by the
C 1 strong force (carried by gluons)

66
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Revisiting the proton

Simplified picture of a proton:

up quark

e 3 primary quarks

/ \ gluons e 2 up-quarks ®
; >

e 1 down-quark

S

. \/'/—\\ //\k/. /
Proton l/ This picture is otherwise horribly wrong!

down quark up quark

C” “3 | e Quarks are bound together by the
C 1 strong force (carried by gluons)

6/
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Revisiting the proton

(Slightly) more accurate picture of a proton:

o
Most of the proton's structure comes
from the activity of the gluons, and the
fact that virtual quark—anti-quark pairs
are popping in and out of existence
(thanks to the strong energy field).
25th May 2022 % 4



When protons collide

The energy carried by all of the quarks and gluons inside
the proton can be used to create new heavy particles.

69
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When protons collide

Gluons are abundant in the proton

hey love to make quarks (strong force
couples to quarks and gluons)

The Higgs boson (and other new Higgs-like
narticles that may be lurking in the data) is
most likely to interact with heavy things (like
top and bottom quarks).

/0
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Why can’t physicists prove a Grand Unified Theory? -
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Distance raptor over time raptor equals velociraptor .
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A photon checks into a hotel, where a bellhop asks where its suitcase is. -
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What happens when electrons lose their energy? -
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