

Road path to the instrumentation lectures

- Why instrumentation is important?
- Introduction on how we detect particles
- Note that experiments can be very different according to their physics focus

Road path to the instrumentation lectures

- Why instrumentation is important?
- Introduction on how we detect particles
- Motivations for the general purpose LHC detectors (ATLAS and CMS)

Tomorrow: silicon detectors and innovative technologies needed for the LHC upgrades and FCC

Very complex events

- Demonstrating that a luminosity of 10³⁴ s⁻¹ cm⁻² could be usable was not easy and required a large RD effort that took decades
- We will have to do the same for future colliders like theFCC

Large Hadron Collider (LHC)

Collider detectors

 Tracker detector: Measure position and determine charge and momentum by bending the charged particles in magnetic field

Calorimeters:
 measure energy
 through total
 absorption
 (destructive for
 almost all
 particles except
 muons and
 neutrinos)

 Muon detectors: tracking detectors

Coordinate system

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

Detecting Elementary Particles

- The goal of LHC detectors was to measure well: e, μ , τ , γ , W, Z, jets, missing E_T , b tagging
- For W and Z, the information would be reconstructed through their decay to: $Z \rightarrow e^+e^-, \mu^+\mu^-, qq...$ and W $\rightarrow ev, \mu v, qq'....$
- b-tagging: reconstructing vertices of charged particles (e, μ , p, π^{\pm} , K^{\pm}) with a precision of $\approx 10 \ \mu m$

 Every effect of particles or radiation can be used as a working principle for a particle detector.

EM interaction of charged particles with matter

Interaction with the atomic electrons

Interaction with the atomic nucleus.

If the particle's velocity is > the velocity of light in the medium → Cherenkov Radiation.

Incoming particles lose energy and atoms are <u>excited</u> or <u>ionized</u>.

Particles are deflected and a Bremsstrahlung photon can be emitted.

When a particle crosses the boundary between two media, there is a probability ≈1% to produce an X ray photon <u>Transition radiation</u>.

Energy loss by ionization

The Bethe-Bloch equation for energy loss

Valid for heavy charged particles ($m_{incident} >> m_e$), e.g. proton, k, π , μ

$$-\left\langle \frac{dE}{dx} \right\rangle = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln(\frac{2m_e c^2 \beta^2 \gamma^2}{I^2} W_{\text{max}}) - 2\beta^2 - \delta(\beta \gamma) - \frac{C}{Z} \right]$$

=0.1535 MeV cm²/g

$\frac{dE}{dx} \propto \frac{Z^2}{\beta^2} \ln\left(a\beta^2 \gamma^2\right)$

Fundamental constants

r_e=classical radius of electron m_e=mass of electron N_a=Avogadro's number c =speed of light

Absorber medium

I = mean ionization potential

Z = atomic number of absorber

A = atomic weight of absorber

 ρ = density of absorber

 δ = density correction

C = shell correction

Incident particle

z = charge of incident particle

 β = v/c of incident particle

 $\gamma = (1-\beta^2)^{-1/2}$

W_{max}= max. energy transfer in one collision

$$r_e = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_e c^2}$$

The Bethe-Bloch Formula

- Common features:
 - fast growth, as $1/\beta^2$, at low energy
 - wide minimum in the range $3 \le \beta \gamma \le 4$,
 - slow increase at high $\beta \gamma$.
- A particle with dE/dx near the minimum is a minimum-ionizing particle or mip.
- The mip's ionization losses for all materials except hydrogen are in the range 1-2 MeV/(g/cm²)
 - increasing from large to low Z of the absorber.

dE/dx Fluctuations

- A real detector cannot measure <dE/dx>
 - It measures the energy ΔE deposited in layers of finite thickness Δx
 - Repeated measurements are needed
- Thin layers or low density materials: dE/dx has large fluctuations towards high losses (Landau-Vavilov, Bichsel)

 Thick layers and high density materials: the dE/dx is a more Gaussian-like (many collisions

Multiple scattering

- A particle passing through material undergoes also multiple deflections due to Coulomb scattering with the nuclei
- The scattering angle as a function of the thickness x is

$$\theta_{\rm rms}^{\rm proj} = \sqrt{\langle \theta^2 \rangle} = \frac{13.6 \,\mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} [1 + 0.038 \ln(x/X_0)]$$

- Where:
 - p (in MeV/c) is the momentum, βc the velocity
 - z the charge of the scattered particle
 - $-x/X_0$ is the thickness of the medium in units of radiation radiation length (X_0) .
- Small deflections:
 - Large Radiation length X_0 i.e. low Z and low density material (Be, C ...)
 - Small x i.e. very thin detector elements
- Multiple scattering limiting tracking performance at low p

 $X_0 \cong rac{716.4 \ g \cdot cm^{-2} \ A}{Z(Z+1)ln \left(287/\sqrt{Z}
ight)}$ In g/cm must multiply by density to get a length!

Tracking detectors

- High granularity detectors close to the interaction region measuring the trajectory using "hits" due to charged particles ionizing a material (gas, silicon)
 - charged particles' momenta determined from their curvature in a B field (R[m]=p[GeV/c]/(0.3B[T])
 - Extrapolation to origin allows the reconstruction of Primary Vertex of the "hard scattering", while secondary vertices identify tauleptons, b and c-hadrons by lifetime tagging $(d = \beta \gamma c \tau)$

Gas Detectors

Particle Gas Primary Ionization Secondary Ionization (due to δ-electrons)

Silicon Detectors

D. Bortoletto, Lecture 1

Impact Parameter

- Distance between primary vertex and prolongation is called impact parameter (d).
- If d is large the probability is high that the track comes from a secondary vertex
- Distance can be used for tagging b-jets and c-jets ($\beta\gamma c\tau$)

Impact Parameter resolution

Vertex projection from two points: simplified telescope equation

Pointing resolution = ($a \oplus b$) μm

a= depends on detector position resolution

Minimize Δx : e.g. 50 μ m pixel and r_2 very large compared to r_1 (first layer as close as possible to IP) $\rightarrow a = \Delta x = 50/\sqrt{12} = 15 \mu$ m

b= depends on multiple scattering

First layer with minimal amount of material: e.g. $x/X_0 = 0.0114$, $r_1 = 39$ mm \rightarrow b= 57 μ m for p=1GeV/c

Impact Parameter resolution

- Improvement by inserting IBL in the ATLAS Pixel system just before the start of Run 2 in 2015
- IBL: radius of 3.3 cm, smaller pixels
 50 μm× 250 μm (instead of 50 μm×400 μm) and lower mass

Momentum resolution

 Analytic expressions for momentum, track angle and impact parameter resolution have been calculated for equidistant layers

- solenoid spectrometer with a constant B-field B₀
- N + 1 equal and equidistant detector planes.
- d_i the thickness of a single detector plane in X_0 units
- $d_{tot} = (N+1) d_i$

$$\begin{split} \frac{\Delta p_T}{p_T}|_{res.} &= \frac{\sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{720 N^3}{(N-1)(N+1)(N+2)(N+3)}} \\ &\approx \frac{12 \, \sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{5}{N+5}} \end{split}$$

$$\frac{\Delta p_{T}}{p_{T}}|_{m.s.} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \,\text{GeV/c}}{0.3\beta \,B_{0}L_{0}} \times \sqrt{\frac{d_{tot}}{X_{0} \,\sin\theta}} \left(1 + 0.038 \ln \frac{d}{X_{0} \,\sin\theta}\right) \\
\approx \frac{0.0136 \,\text{GeV/c}}{0.3\beta \,B_{0}L_{0}} \sqrt{\frac{d_{tot}}{X_{0} \,\sin\theta}}$$

Momentum resolution

 Analytic expressions for momentum, track angle and impact parameter resolution have been calculated for equidistant layers

- solenoid spectrometer with a constant B-field B₀
- N + 1 equal and equidistant detector planes.
- d_i the thickness of a single detector plane in X_0 units
- $d_{tot} = (N+1) d_i$

- Good transverse momentum resolution requires: small $\sigma_{r\phi}$, strong B₀ field, large L₀ (as L_0^2) many measurement layers N (as \sqrt{N}), thin measurement layers (d_i), long X₀, low Z materials
- Momentum resolution gets worse at large p_T

Atlas and CMS tracking

All silicon system in 3.8 T solenoid field

Strips: 198 m² with 9.3 M channels Inner: 4 barrel layers, 3 end-cap disks Outer: 6 barrel layers, 9 wheels

Pixels: 66 M pixels each 150 x 100 μ m² pixels 3 barrel layers, 2 endcap disks/side (Upgraded in phase 1 to 4 barrel layers + 3 endcaps/side)

Silicon pixel and strip + transition radiation

tracker (TRT) in 2 T field

Strips: 61m² with 6.2 M channels 4 barrel layers + 9 disks per endcap 30 cm <R< 52 cm

Pixels: 80M pixels each 50 x 400 μ m² 3 Barrel layers 3 endcap disks/side IBL: 50 x 250 μm²

From particle to hits

- Charged particle will create O(24000) electronhole pairs
- Charge > threshold is considered a hit
- If charge is collected in multiple adjacent pixel/strips, the hits are grouped together into a cluster
 - Challenge: this can lead to merged clusters in dense environments
- Detector granularity critical to maintain low occupancy
 - Need higher granularity (more smaller pixels) as the luminosity increases
- Hit reconstruction efficiency (in working modules) is > 99% typically
- As a rule of thumb the position resolution is pitch/sqrt(12)

dE/dx and particle ID

- dE/dx is a function of $\beta\gamma$ =P/Mc and can be used to separate different particles once p is known
- μ/π separation impossible, but π/K/p generally achievable

ALICE TPC – Gas detectors

ALICE TPC - silicon ITS

Electron energy loss

- Electrons loose energy in their interaction with matter mainly through:
 - lonization modified Bethe-Bloch formula for identical particles
 - Bremsstrahlung energy loss proportional to 1/m²
 - Dominant for electrons with $E_{\rm e}$ > 10 MeV (and for h.e. muons) leading to exponential attenuation of the electron energy

$$\left(\frac{dE}{dx}\right)_{Brem} = -\frac{\dot{E}(0)}{X_0}$$
 $E(x) = E(0)\exp\left(-\frac{x}{X_0}\right)$

- <dE/dx>_{brem} increases linearly with the initial energy E
- After a layer of material $x = X_0$ the electron has 1/e of its initial energy.

$$X_0\cong rac{716.4\ g\cdot cm^{-2}\ A}{Z(Z+1)lnig(287/\sqrt{Z}ig)}$$
 $X_0=$ radiation length g/cm 2 Must multiply by density to get a length!

- To contain an electron need small X₀ high Z materials
- The Moliere radius is the transverse size of the electron shower:

$$R_M \cong \frac{21.2 \; MeV}{E_C} X_0$$

Total Energy loss and Critical energy

Critical energy

$$\left. \frac{dE}{dx}(E_c) \right|_{brems} = \frac{dE}{dx}(E_c) \right|_{ion}$$

For solid and liquids

$$E_c = \frac{610 \text{ MeV}}{Z + 1.24}$$

For gasses

$$E_c = \frac{710 \text{ MeV}}{Z + 0.92}$$

Example Copper: $E_c \approx 610/30 \text{ MeV} \approx 20 \text{ MeV}$

$$\left(\frac{dE}{dx}\right)_{\text{Tot}} = \left(\frac{dE}{dx}\right)_{\text{Ion}} + \left(\frac{dE}{dx}\right)_{\text{Brems}}$$

Muon Energy loss

The bremsstrahlung cross section is proportional to 1/m²

$$-\left\langle \frac{dE}{dx} \right\rangle_{brem} \propto \frac{E}{m^2}$$

Since $(m_{\mu}/m_e)^2 \approx 44100$ E_c for muons > 100s GeV.

- Critical energy for muons is 450 GeV in copper
- At high energies (E 1 TeV)
 bremsstrahlung contributes
 about 40% to average
 muon energy loss.
- Muons with energies > ~10
 GeV can penetrate thick
 layers of matter
- This is the key signature for muon identification

D. Bortoletto, Lecture 1

Interaction of photons with matter

• A photon can disappear or its energy can change dramatically at every interaction

$$I(x) = I_0 e^{-\mu x}$$
 $\mu = \frac{N_A}{A} \sum_{i=1}^{3} \sigma_i$

$$\lambda = \frac{1}{\mu}$$

 μ =total attenuation coefficient σ_i =cross section for each process

Photoelectric Effect

Compton Scattering

Pair production

Interaction of photons with matter

Pair production

- Photons with E>100 MeV loose most of their energy in e⁺e⁻ pair production
 - The threshold in the field of nuclei is T=2m_ec²
 =1.022 MeV
- The pair production cross section is:

$$\sigma_{pair} \sim \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$

Where A is the mass number of the target and N_A Avogadro Number

• The radiation length X_0 is also 7/9 of the mean free path for pair production by a high-energy photon

D. Bortoletto, Lecture 1

EM showers and X₀

- Simplified model [Heitler]: shower development governed by X₀
 - e^{-} loses [1 1/e] = 63% of energy in 1 X_0 (Brems.)
 - A γ will convert into a e⁺e⁻ (pair prod.) with a probability P = 1 exp(-7/9)=0.54
- Assume e≈2 and that for E > E_c
 no energy loss by ionization/excitation
- Simple shower model:
 - N(t)=2^t particles after t =x/X₀ each with energy E(t)=E₀/2^t
 - Stops if E (t) < E_c=E₀2^{tmax}
 - Location of shower maximum at

$$t_{max} = \frac{\ln(E_0/E_c)}{\ln 2} \propto \ln\left(\frac{E_0}{E_c}\right)$$

$$N_{\text{max}} = 2^{t_{\text{max}}} = \frac{E_0}{E_C}$$

D. Bortoletto, Lecture 1

5/24/22

Radiation length of different elements

EM Shower development

- Size of calorimeter driven by X₀
- Cell size related to R_M and chosen such that 70-80% of energy of a particle is deposited in the cell
- Granularity: size of detector elements in transverse and longitudinal direction.
 Determines the ability to resolve two showers induced by nearby particles

Longitudinal development

95% of energy within:

$$L (95\%) = t_{max} + 0.08 Z + 9.6 X_0$$

$$X_0 = \frac{180A}{Z^2} (\text{g } cm^{-2}) \text{ and } t_{max} = \ln \frac{E}{E_c} - 1$$
 (for e induced showers)

Transverse development for 10 GeV electron showers in Cu

90% of energy: R_M Beyond shower max broadening due to low energy γ

$$R_M = \frac{21 \, MeV}{E_C} X_0$$

Hadron interactions with matter

- Many processes involved:
 - -lonization,
 - –hadron production(fragmentation, ...
 - -Charge exchange $\pi^{+/-}$ n→ π^0 p/pbar
 - -nuclear de-excitation,
 - -nuclear breakup,
 - -spallation neutrons,
 - -muon and pion decay+

-....

Hadronic Showers

Electromagnetic component:

- Electrons, photons (from excitation, radiation, decay of hadrons, photoeffect, ...)
- Neutral pions (eg, $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$)

Hadronic component:

- Charged hadrons π^{\pm} , K^{\pm} ,...:ionization, excitation, nuclei interaction (spallation p/n production, evaporation n, spallation products)
- Neutrons: Elastic collisions, thermalization + capture (=> γ 's)
- Break-up of nuclei

Part of the energy is lost in breaking nuclei (nuclear binding energy)

- Large non-Gaussian fluctuations of each component (EM vs non-EM)
- Large, non-Gaussian fluctuations in "invisible" energy losses

Nuclear Interaction Length

• Hadronic showers are governed by the interaction length λ_{int} : the mean free path between inelastic interaction

$$\lambda_{int} \approx \frac{35 \ cm}{\rho} \ A^{1/3}$$

• Longitudinal: Need about ~10 λ_{int} to contain most of the hadronic showers

• Transverse: Need about ~1.5 λ_{int} to contain most of the hadronic showers

D. Bortoletto, Lecture 1

Nuclear Interaction length

- To contain an hadronic, you need small λ_{int}
- λ_{int} (Fe)=17 cm

	Lead	Iron
Ionization by pions	19%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	10%	5%
Number of charged pions	0.77	1.4
Number of protons	3.5	8
Number of cascade neutrons	5.4	5
Number of evaporation neutrons	31.5	5
Total number of neutrons	36.9	10
Neutrons/protons	10.5/1	1.3/1

Figure 34.21: Nuclear interaction length λ_I/ρ (circles) and radiation length X_0/ρ (+'s) in cm for the chemical elements with Z > 20 and $\lambda_I < 50$ cm.

Calorimetry

- Calorimetry refers to the detection of particles through total absorption in a block of matter
 - The measurement process is destructive for almost all particle
 - The exception are muons (and neutrinos)
 → identify muons easily since they
 penetrate a substantial amount of matter
- Calorimeters are essential to measure neutral particles

- Homogenous calorimeters: whole volume filled by high-density material (BGO, Lead glass, noble gases ...)
 - Exclusively used for EM part
 - Best resolution
 - Expensive

- Sampling calorimeters: alternating layers of "absorbers" and active materials
 - Absorbers: Iron, Cupper, Lead…..
 - Active: Plastic scintillators, silicon detectors, gas detectors...

Energy resolution

 Calorimeters are the ideal instrument to measure the full energy of particles, particularly at high momentum

$$E \propto N \qquad \sigma_E \approx \sqrt{N} \approx \sqrt{E}$$

$$\sigma_E = a\sqrt{E} \oplus bE \oplus c$$

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \bigoplus b \bigoplus \frac{a}{E}$$

- intrinsic statistical shower fluctuations
- sampling fluctuations
- signal quantum fluctuations (e.g. photoelectron statistics)

c: noise term

- readout electronic noise
- Radio-activity, pile-up fluctuations

b: constant term

- inhomogeneities (hardware or calibration)
- imperfections in calorimeter construction (dimensional variations, etc.)
- non-linearity of readout electronics
- fluctuations in longitudinal energy containment (leakage can also be ~ E-1/4)
- fluctuations in energy lost in dead material before or within the calorimeter

CMS ECAL

Homogeneous Ecal, PbWO₄ crystals 23 (22) cm long in Barrel (endcap)

- Excellent energy resolution
 - $-X_0 = 0.89 \ cm \Rightarrow$ compact calorimeter
 - $\overline{-R_M} = 22 \ cm \Rightarrow$ compact shower development
- Fast light emission
- Radiation hard (10⁵ Gy)
- But low light yield (150 $\gamma/{\rm MeV}$) and response depends on Temperature and dose

- Barrel (|η|<1.48), ~ 67 t
- 61200 crystals in 36 super-modules

- Endcap I (1.48 < $|\eta|$ <3), ~ 23 t
- 14648 crystals over 4 Dees (2 per endcap)

ATLAS ECAL

- Sampling Pb/LAr calorimeter with "accordion" geometry
- Longitudinal depth $\sim 25 \text{ X}_0$, (47 cm vs 22 cm for CMS)
- 3 layers up to $l\eta l=2.5$
- 2 layers 2.5<lηl<3.2
- Usage of Liquid Argon
 - Radiation Hard
 - High number of electron-ion pair produced by ionization (1 GeV deposit \rightarrow 5x10⁶ e-)
 - Stable vs time but needs cryostat (90K)

D. Bortoletto

CMS and ATLAS calorimeter performance

Standalone performance in test beams

$$rac{\sigma}{E} = rac{2.8\%}{\sqrt{E({
m GeV})}} \oplus rac{125}{E({
m MeV})} \oplus 0.3\%$$

$$\frac{\sigma}{E} = \frac{10\%}{\sqrt{E}} \oplus \frac{0.3}{E} \oplus 0.7\%$$

CMS HCAL

HB/HE: Sampling Brass/plastic scintillator calorimeter

Segmentation: $\Delta\eta \times \Delta\phi$ =0.087x0.087 (larger at high η) 8x20° "wedges" with alternate brass plates (5-8 cm) and "tiles" embedded with Wave Length Shifter (WLS).

Light from scintillator: blue-violet \rightarrow WLS: absorb light then fluorescence in green \rightarrow Green light read by Hybrid Photo Diode (HPD)

CMS HCAL

- At $|\eta|=0$, λ_{int} from HB =5.8 (7.2 with ECAL) \rightarrow Large leakage...
- CMS adds HCAL Outer (HO):
 - Scintillator + WLS outside coil acting as "tail catcher"
 - Standalone resolution 100%/sqrt(E)

ATLAS HCAL

- Different technologies depending location due to different dose
- Total thickness about 8- $10 \lambda_{int}$
- lηl< 1.7 Tile calorimeter Iron and scintillator
- 1.7<I η I< 3.2 LAr/Cu
- 3.2<lη
 4.9 Forward calorimeter LAr/Cu or W

ATLAS Tile calorimeter

steel/scintillator, scintillating fibers, readout by photomultiplier

Impact of calorimeter resolution

- Comparing e⁺e⁻ →WW and $e^+e^- \rightarrow ZZ$ at $\sqrt{s}=300$ GeV (hadronic decays only, assume WW:ZZ = 1:1 for illustration)
- Reality = 7:1 !
- 30%√E_{jet} is a good target. Physics may demand even more!

5/24/22

Muon Detection

- Muon identification, momentum measurement, and triggering depends on inner tracking system and muon spectrometers located after the calorimeters
- Layout depends critically on the magnet configuration adopted for the experiment.
- Both ATLAS and CMS inner trackers are in a solenoidal B field along the beam direction

CMS Muon spectrometer return field of solenoid for CMS

5/24/22 D. Bc

ATLAS vs CMS Muon resolution

Punchthrough

- When does a pion look like a muon?
- Total punchthrough probability of hadronic showers at a given depth x is $P(x) = \frac{N_{hit}(x)}{N_{tot}}$

Pion Punchthrough probability – from RD5

Figure 1: Schematic of the RD5 detector it its 1993 configuration

	μ	π		
1		min.bias.	>10 λ	>20 \lambda
S1 x S5	•	•	•	•
VETO	•	•	•	
S4	•	• ∣	•	•
Station 1	•			•
Station 2	•			•

S1:	10	cm	X	15	cm
S4a:	4	cm	X	4	cm
S4b:	2	cm	X	2	cm
S5:	15	cm	X	15	cm
S7:	100	cm	X	250	cm

counters:

simulation with &

simulation without &

Neutrinos

 "Detected" by missing momentum – Must make sure your detector is hermetic!

Building a collider detector

- Vertex Detectors: measure origin
- Trackers: Measure "charge" and momentum by bending the particle in a magnetic field

 Light weight, low Z materials to measure precisely the position of the particle

- Calorimeters: detection of particles through total absorption
 - Process is destructive for almost all particles except muons and neutrinos
 - EM calorimeters: high Z materials to catch electrons and photons
 - Hadron Calorimeters: hadron interact mainly via the strong interaction, high A materials (Iron,Copper)
- Muon detectors: tracking detectors

Next lecture

- Silicon detectors
- New technologies for the HL-LHC
- The challenges of new colliders

5/24/22

Experiments have to be clever

Facility	Original Purpose	Discovery with Precision Instruments
CERN PS (1973)	πN(interactions)	Neutral Currents →Z,W
BNL AGS (1962- 1974)	πN(interactions)	Two kinds of neutrinos, Time reversal non Symmetry, charm quark
FNAL (1977)	Neutrino Physics	Bottom quark, top quark
SLAC SPEAR (1968-1976)	ep,(QED)	Partons, charm quark, tau lepton
CERN ISR (1971- 1980)	рр	Increasing pp cross-section
DESY PETRA (1979)	top(quark)	Gluon
Super-K (1996-)	Proton(Decay)	Neutrino Oscillations

INSTRUMENTATION

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained"

Freeman Dyson

Dipole LCb integrated field 4Tm

Forward Spectrometer Configuration

- At high energies b- and bhadrons are produced mainly in the same forward or backward cone.
- <p_T(b)> ~ 80 GeV/c → 7
 mm mean decay distance
 → good separation
 between primary and
 decay vertices.

Dipole magnet

- Particle deflected in x z plane
- Detectors are arranged in parallel planes along z
- Bending from difference of the slopes before and after magnet

$A^{CP} = (-8.2 \pm 0.03 \pm 0.03)\%$

Physics goals:

- precision measurements of the CKM matrix to probe the validity of the SM and CP violation
- Measurements of processes strongly suppressed in the SM which could be enhanced by NP
- Measurements of rare decays $B_s \rightarrow \mu^+\mu^-$
- Studies of lepton universalities

Detector

- Excellent vertex and proper time resolution (VELO)
- Precise particle identification (ID): hadron π/K separation with Ring Imaging Cherenkov counters (RICH)
- High momentum resolution for precise invariant mass reconstruction
- A versatile trigger scheme

Before RICH PID

After RICH PID

Needed to distinguish $B^0 \to \pi^+ \pi^$ from $B^0 \to K^+ \pi^-$

Physics goals:

- precision measurements of the CKM matrix to probe the validity of the SM and CP violation
- Measurements of processes strongly suppressed in the SM which could be enhanced by NP
- Measurements of rare decays $B_s \rightarrow \mu^+ \mu^-$
- Studies of lepton universalities

Detector

- Excellent vertex and proper time resolution (VELO)
- Precise particle identification (ID): hadron π/K separation with Ring Imaging Cherenkov counters (RICH)
- High momentum resolution for precise invariant mass reconstruction
- A versatile trigger scheme

ALICE

- Measurements down to very low p_T
- Particle ID in the Time Projection Chamber and Time of Flight detectors
- Excellent vertex detectors to measured heavy flavour charmed and beauty baryons
- Forward muon spectrometer studies the complete spectrum of heavy quarkonia (J/ ψ and Υ resonances)

ALICE PID

TPC (+ITS) dE/dx

HMPID - Cherenkov radiation

Plus

- Transition radiation detector (TRD)
- Photon spectrometer (PHOS)
- EM calorimeter (EMCAL)
- Muon spectrometer

Cherenkov emission

If the velocity of a particle is such that $\beta = v_p/c > c/n(\lambda)$ where n(λ) is the index of refraction of the material, a pulse of light is emitted around the particle direction with an opening angle (θ_c)

Symmetric dipoles

coherent wavefront

The threshold velocity

$$\beta_{th} = \frac{\nu_{th}}{c} = \frac{1}{n(\lambda)}$$

Number of produced photons:

$$N_{photons} = L \frac{\alpha}{\hbar c} Z^2 \int \sin^2 \theta_c(E) dE$$

Cherenkov photon emission

- Cherenkov emission is a weak effect and causes no significant energy loss (<1%)
- It takes place only if the track L of the particle in the radiating medium is longer than the wavelength λ of the radiated photons.
- Typically O(1-2 keV / cm) or O(100-200) visible photons /cm

Cherenkov radiation

a reactor

glowing in the core of

Refractive index range

Momentum

RICH performance

$$N_{\sigma} \approx \frac{\left|m_1^2 - m_2^2\right|}{2P^2\sigma[\theta_c(tot)]\sqrt{n^2 - 1}}$$

For particles well above threshold

B. N. Ratcliff, NIMA 502 (2003) 211-221

- Two detectors with gas radiators (C_4F_{10} and CF_4)
 - Originally with a 3rd radiator (aerogel)
 - I "Novel" photon detectors, pixel HPDs
 - Aging, issues with vacuum
- 1 Two mirror systems
- ☐ Complex pattern recognition
 - ➤ 100s of tracks
 - Global likelihood method

Transition radiation

Transition radiation occurs if a relativist particle (large γ) passes the boundary between two media with different refraction indices (n₁≠n₂) [predicted by Ginzburg and Frank 1946;

experimental confirmation 70ies]

- Effect can be explained by rearrangement of electric field
- A charged particle approaching a boundary creates a dipole with its mirror charge

The time-dependent dipole field causes the emission of electromagnetic radiation

$$S = \frac{1}{3}\alpha z^2 \gamma \hbar \omega_P \quad (\hbar \omega_P \approx 28.8 \sqrt{\frac{Z\rho}{A}} eV)$$

Transition Radiation

- Typical emission angle: θ =1/γ
- Energy of radiated photons: ~ γ
- Number of radiated photons: αz²
- Effective threshold: $\gamma > 1000$

Use stacked assemblies of low Z material with many transitions and a detector with high Z

Note: Only X-ray
(E>20keV) photons
can traverse the
many radiators
without being
absorbed

The ATLAS Transition Radiation Tracker

 The TRT main element are gas filled tubes (d=4 mm, 40-150 cm long) to measure precisely the position

370,000 drift tubes. Each layer of straws interleaved with polypropylene as a radiator

Polypropylene fibers fill the gap between straws to distinguish e⁻ from hadrons

ATLAS Transition radiation tracker

