

Top Quark Physics - I

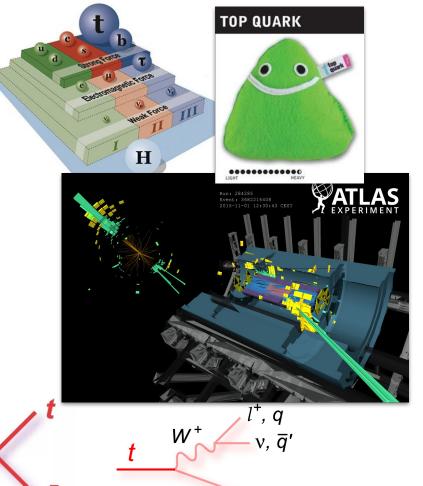
Dr. Michele Pinamonti

(INFN Trieste - University of Udine - ICTP, Trieste - ATLAS experiment, CERN)

Third HEP Graduate Workshop University of Batna 1, Batna Algeria 24-26 May 2022

Outlook

Disclamers:


- ATLAS experiment perspective
- might repeat know concepts
- <u>Lecture 1</u>:
 - A brief recap
 - The top quark
 - Tools for top quark physics
 - Top-pair production cross-section

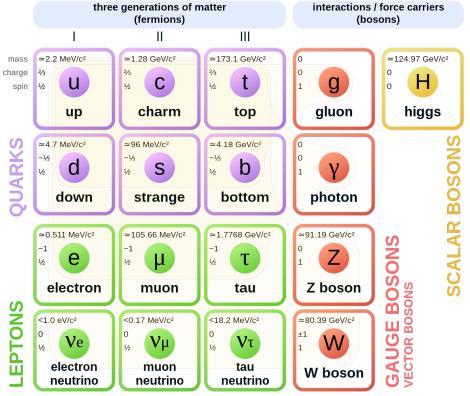
• <u>Lecture 2</u>:

- Single top
- Top quark mass
- Spin and angular properties
- Top events as a tool for other measurements

g

- Associated top production
- New physics with top
- Closing remarks

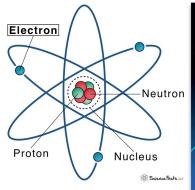
h

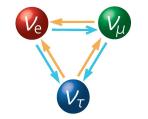

A brief recap

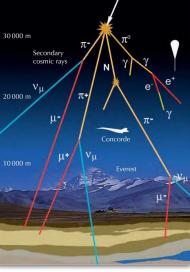
of elementary The Standard Model particles

- Best theory describing elementary physics
 - based on **quantum field theory** 0
 - 6 **guark** fields + 6 **lepton** fields 0
 - electro-weak interaction (+EW bosons) 0
 - **QCD** interaction (+*gluons*) 0
 - **Higgs** field 0

- 4 Fre FMV + i 4 py + 1 **Standard Model Lagrangian** + h.c. + Ψi yij Yig+ h.c. $+ D_{\phi} \phi^2 - V(\phi)$

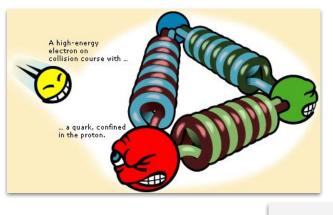


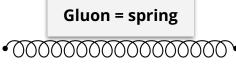

Leptons and Quarks

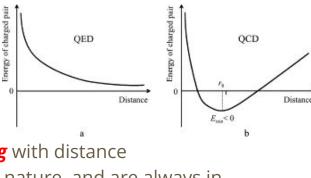

- Leptons:
 - interact via **QED** and **weak** interaction
 - heavier leptons decay to lighter leptons
 - conserving "flavour"
 - neutrinos:
 - zero electric charge (only weak interaction)
 - extremely small mass
 - almost invisible

• Quarks:

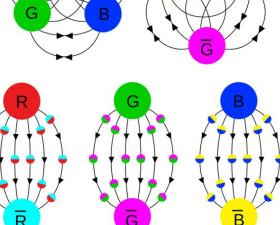
- interact via **EW** and **QCD**
- heavier quarks decay to lighter quarks
 - mixing between quarks: CKM matrix
- fractional **charge**: ²/₃ or ¹/₃
- quark "confinement" inside hadrons

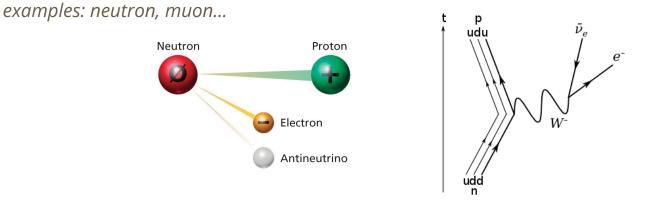

 $egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix} = egin{bmatrix} d' \ s' \ b' \end{bmatrix}$




Quarks and QCD

- QCD interaction keeps quarks together inside nucleons:
 - 3 colour QCD charges: "R", "G", "B"
 - **strong attraction** between different colours, *increasing* with distance
 - as a consequence, quarks cannot live as stable states in nature, and are always in colorless bound states called baryons and mesons


G


B

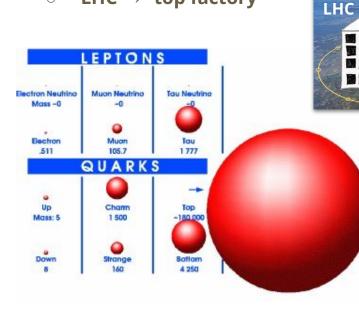
Electro-Weak interaction and Weak decay

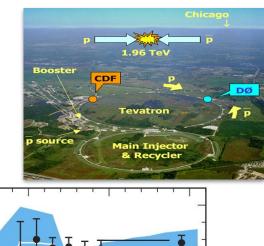
- Most particle **decays** proceed through electron-weak interaction
 - able to **change flavour** of particles (*only charged current*)
- For **light** particles ($m < m_w$) decay **suppressed** \Rightarrow **long lifetime**

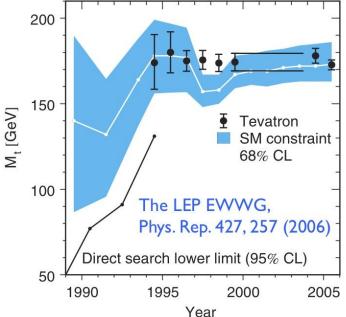
For heavy particles (m > m_W) cascade decay to on-shell W boson and final state particles
 ⇒ can have short lifetime!

Ο

The top quark

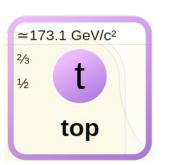



Top quark history


- **Discovered** in 1995 at the Tevatron *pp* collider @FermiLab
 - $m_t \sim 173 \text{ GeV} \gg \text{any other quark!}$
- Predicted since 1976, mass constrained by EW precision data

+ FACTORY

- Studied intensively at Tevatron and at LHC
 - \circ LHC \rightarrow "top factory"



Top quark properties

- Quantum numbers:
 - same as *u* and *c* quark:
 - spin ½
 - charge +²/₃
- **<u>Very large mass</u>** ⇒ many nice features:
 - **decay time** (\sim 5×10⁻²⁵ s) < hadronization time (\sim 2×10⁻²⁴ s)
 - \Rightarrow no top bound states
 - ⇒ the only quark that can be "seen" outside hadrons
 - largest **coupling with Higgs** among all SM particles
 - Yukawa coupling $y_t \sim 1$

• <u>CKM mixing</u>:

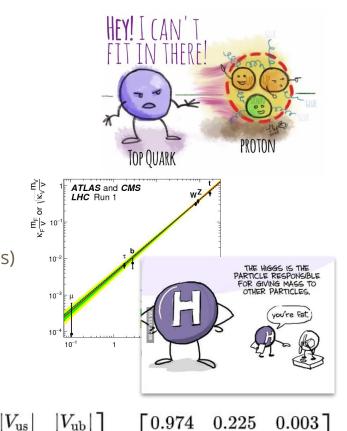
- only relevant CKM matrix element is *V_{tb}* ~_1
- mixing with other quarks very small

 $|V_{\rm ud}|$

 $|V_{\rm cd}|$

 $|V_{\rm cs}|$

 $V_{\rm cb}$


 \approx

0.225

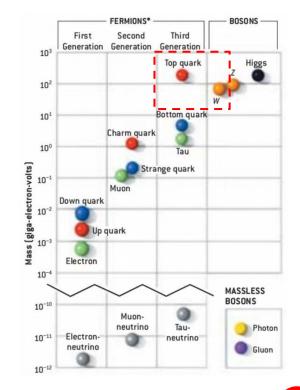
0.009

0.973

0.040

0.041

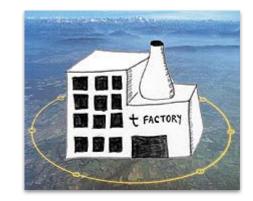
0.999

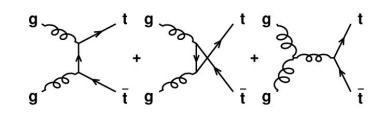

Top quark decay

- <u>"Weak" decay</u>:
 - $m_t > m_W + m_b$ ⇒ not suppressed! ⇒ τ ~ 5×10⁻²⁵ s
- Almost **exclusive** decay:
 - $\circ \quad t \to W^{+} b$
 - (other CKM elements too small)
- *W boson* can decay to:
 - leptons
 - quarks
- *b-quark* hadronizes and forms a high energy hadronic jet
- Fast decay:
 - no bound states
 - **spin information** not disturbed by hadronization proces

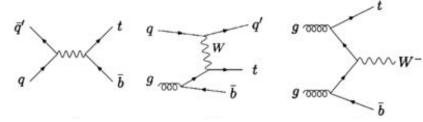
 W^+

b


 \Rightarrow passed to decay products

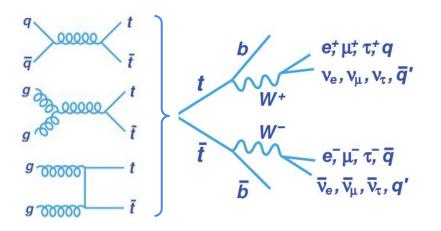


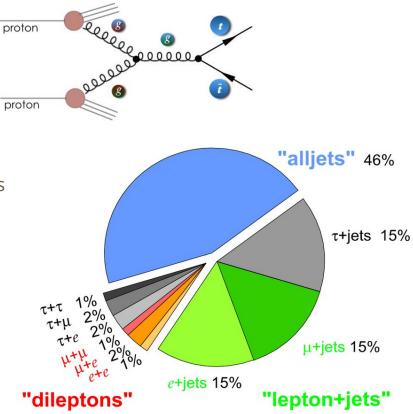
Top quark production


- **<u>At hadron colliders</u>** (Tevatron $p\overline{p}$, LHC pp):
 - **QCD** production \rightarrow *tf* pairs

00

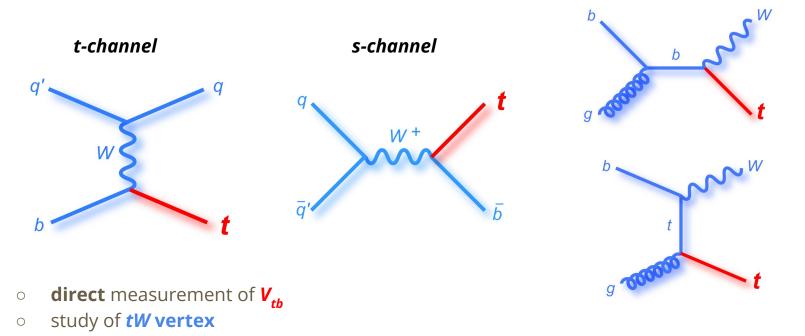
 $\circ \quad \textbf{EW} \text{ production } \rightarrow \textbf{single top}$


q


a

Top-quark pair production

- Largest cross-section @hadron colliders
- Final state determined by *W* **decays**:
 - **all-hadronic**: 6 jets
 - **single-lepton / lepton+jets**: $1\ell^{\pm}(+1\nu) + 4$ jets
 - **dilepton**: $2\ell^{\pm}(+2\nu) + 2$ jets



Single-top quark production

• 3 production modes:

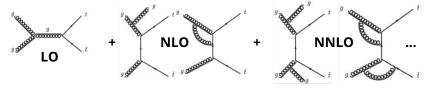
Wt-channel

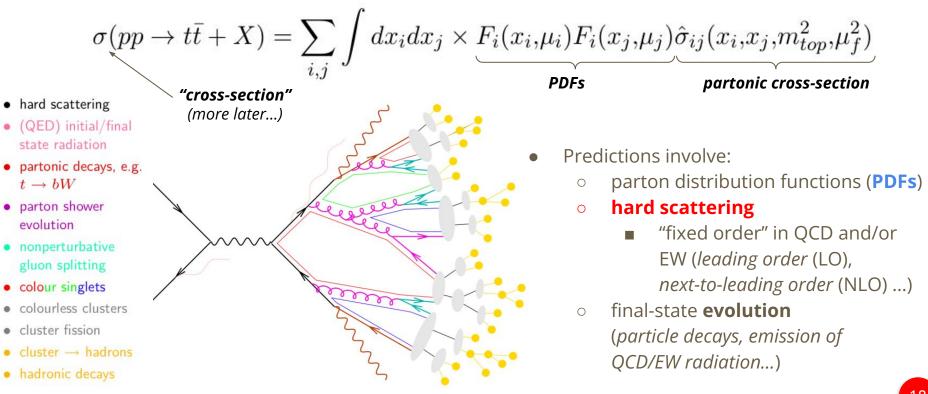
Why is the top so special?

- Relatively **recent** particle
- The only quark <u>not</u> hadronizing:
 ⇒ allows to study quark properties more directly
 ⇒ allows to study spin properties

- Strong relationship with **Higgs** (*boson and field*) ↔ **large mass**
 - o important high-order corrections to most SM processes
 ⇒ important player of EW precision tests of the SM
 - many models of **physics beyond the SM** (BSM) predict top playing a special role
- Top events are a **background** for other physics processes (*Higgs, BSM...*)
- Detection of tops involves most of the **detector** components and data analysis techniques:
 - *jets*, *b-tagging*, *electrons*, *muons*, *missing energy* (from neutrinos)

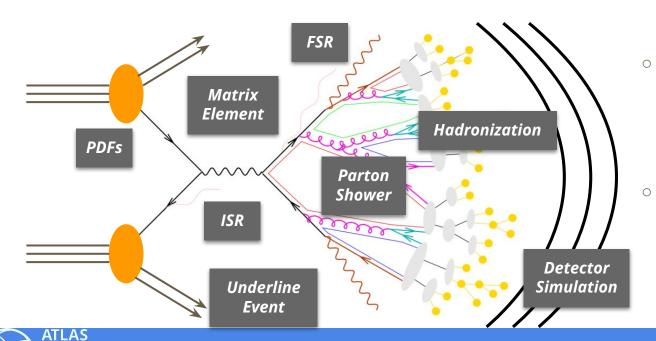
What we can do with top quark?




Tools for top-quark physics

Theory predictions

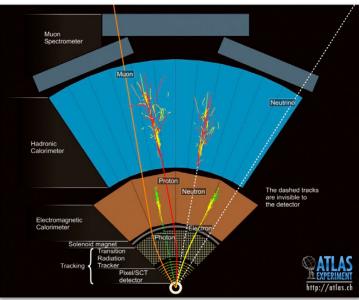
Theory predictions for HEP quantities based on perturbation theory

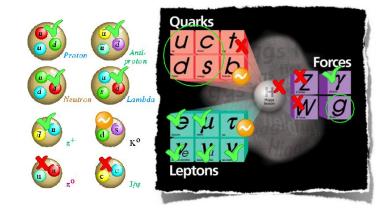


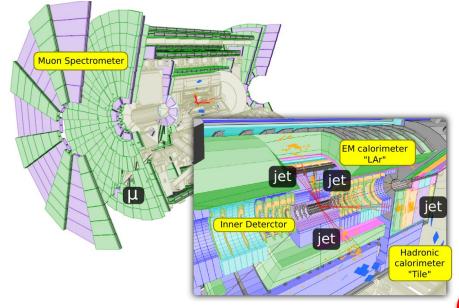
18

Monte Carlo simulation

- Useful tool to bring theory predictions as close as possible to experimental data:
 - **simulated events** are produced
 - following the same steps as described before

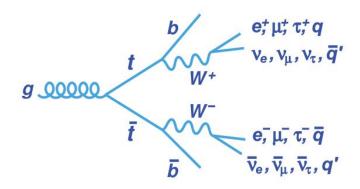


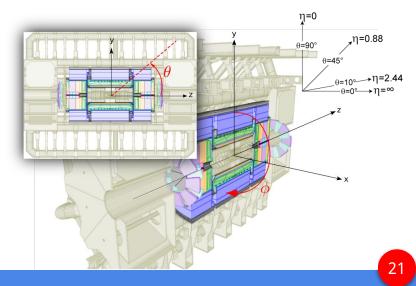

final state evolution
 ("parton shower") and
 hadronization
 handled in approximate /
 empirical ways


detector response
 simulation also added
 (full simulation or
 fast simulation)

Signatures in particle detectors

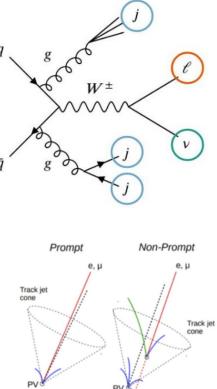
- How do we see top quarks in our detector?
- "Visible" particles are just:
 - electrons, photons
 - hadronic **jets** (protons, neutrons, pions, kaons...)
 - o **muons**




Top pair event selection

- Single-lepton typical event selection:
 - 1 electron or muon
 - $p_{\rm T} > 20 / 25 / 30 \,{\rm GeV}$
 - |η| < 2.5
 - identification cuts and isolation requirements

- *p*_T > 25 GeV
- |η| < 2.5
- up to 2 "b-tagged"
 - using powerful multi-varied algorithms
- Presence of **missing transverse energy**, E_{T}^{miss}
 - e.g. $E_{T}^{\text{miss}} > 30 \text{ GeV}$ or $m_{T}(W_{v,\ell}) > 60 \text{ GeV} \dots$

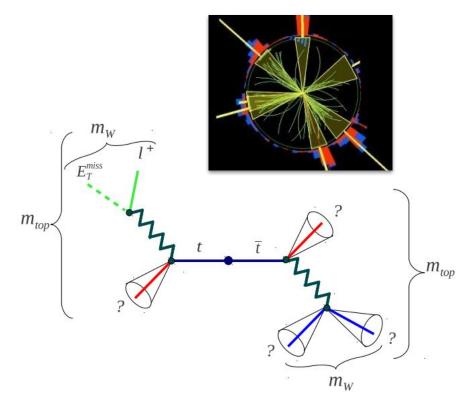

Backgrounds

- Non-top events can *mimic* final state topology (and kinematics)
 → "background" events (as opposed to "signal events")
- Main backgrounds (for *tt l*+jets and dilepton):
 - W+jets
 - Z+jets
 - \circ WW, WZ, ZZ (+jets) \rightarrow "diboson"
 - single top
 - events with

fake / non-prompt / mis-identified electrons or muons

• Backgrounds need to be:

- **estimated** (via Monte Carlo simulation or data-driven methods)
- **rejected** as much as possible with event selection
- **subtracted** from data to extract signal from data



 $jet \rightarrow lepton$

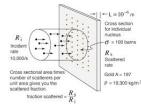
Top pair event reconstruction

• Reconstruction of **top four momenta** from **final-state particles** not always trivial...

- consider all possible jet and lepton
 assignments to tops (and Ws) in an event
- find the assignment that
 minimizes χ² defined as:

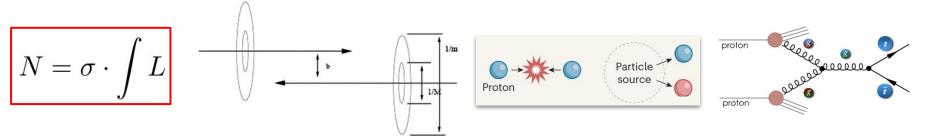
$$\chi^2 = \sum \frac{(m_{ijk} - m_t)^2}{\sigma_t^2} + \frac{(m_{ij} - m_W)^2}{\sigma_W^2} + \frac{(m_{n\ell\nu} - m_t)^2}{\sigma_t^2}$$

 $p_z(v) \text{ obtained by}$ imposing $m(E_T^{\text{miss}}+\ell) = m_W$



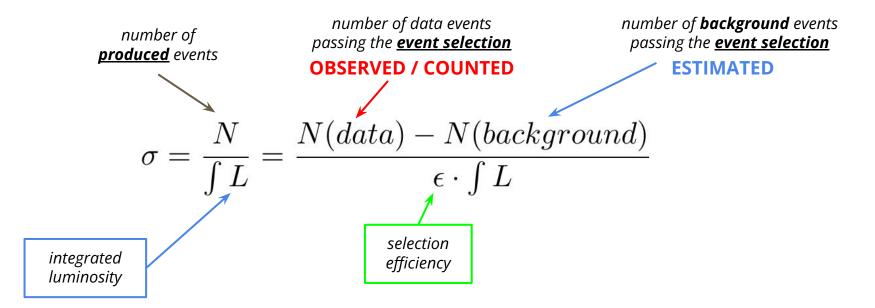
Top-pair production cross section

Cross-section in Collider Physics


• "Cross-section what?"

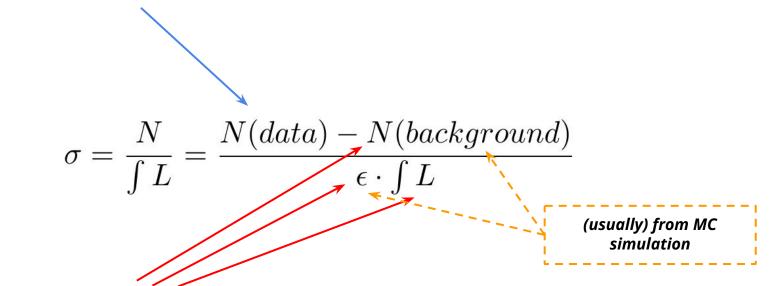
WIKIPEDIA The Free Encyclopedia In physics, the cross section is a **measure of the probability** that a specific process will take place when some kind of *radiant excitation* (e.g. a particle beam, sound wave, light, or an X-ray) intersects a *localized phenomenon* (e.g. a particle or density fluctuation). [...] Cross section is typically **denoted** σ (sigma) and is expressed in units of **area**, more specifically in <u>barns</u>. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur [...]

- Essentially, in the case of **particle colliders**:
 - **probability of interaction** / reaction between two colliding particles
 - multiplied by the effective beam intensity ("luminosity") \rightarrow rate of interactions / reactions
 - \circ integrated over time (i.e. multiplying by "integrated luminosity") \rightarrow number of "events"

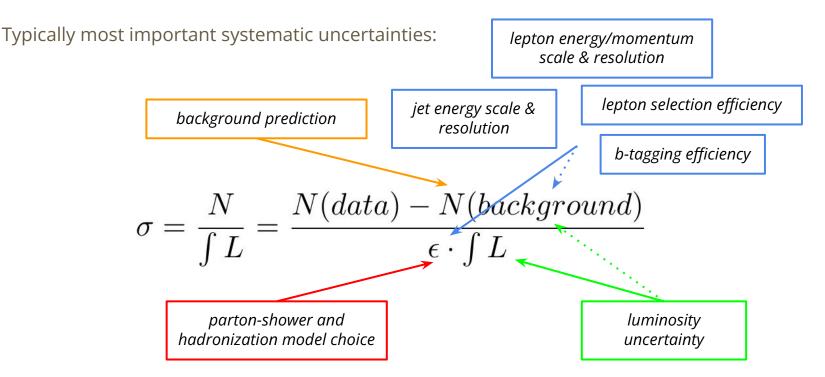


- Besides *inclusive* cross-section we define **partial cross-sections** for specific process:
 - probability of production of **specific final state** from certain colliding particles

Measuring a cross-section

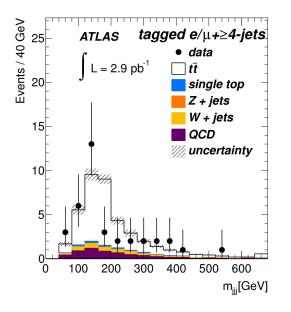

• Cross-section measurement golden formula:

Statistical and systematic uncertainties


- Statistical uncertainty = uncertainty on event counting
 - Poisson statistics \Rightarrow at high N, error = \sqrt{N}

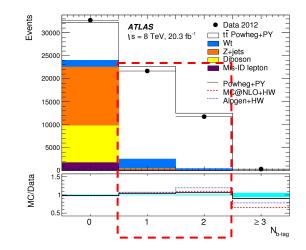
• **Systematic uncertainties** = other uncertainties, related to experimental instrumentation, tools, techniques, assumptions, theoretical predictions...

Systematic uncertainties



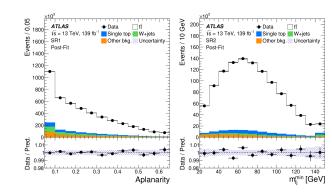
Total *tt* cross section measurements in ATLAS

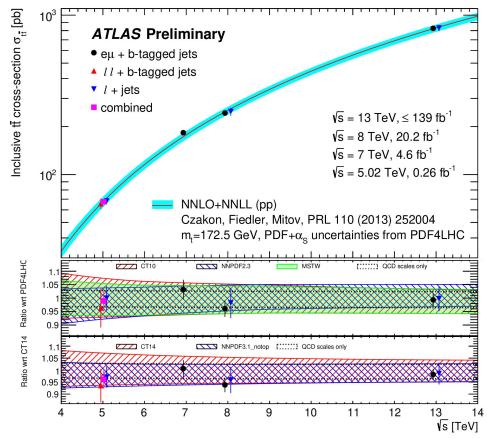
- 2010, √s = 7 TeV, ∫L = 3 pb⁻¹ Eur. Phys. J. C 71 (2011) 1577
 - "Cut & Count"


 $\sigma_{t\bar{t}} = 145 \pm 31 {}^{+42}_{-27} \text{ pb}$

2014, √s = 8 TeV, ∫L = 20 fb⁻¹ Eur. Phys. J. C 74 (2014) 3109

- dilepton eµ only
- extract σ and b-tagging efficiency at the same time

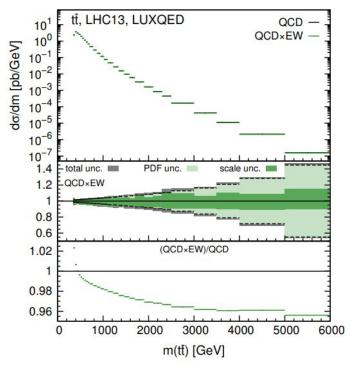

 $\sigma_{t\bar{t}} = 242.4 \pm 1.7 \pm 10.2 \text{ pb}$


2020, √s = 13 TeV, ∫L = 139 fb⁻¹ Phys. Lett. B 810 (2020) 135797

- ℓ + jets
 - "profile likelihood fit"
 ⇒ in situ constraint of all systematic uncertainties

 $\sigma_{t\bar{t}}=830\pm0.4\pm39~{\rm pb}$

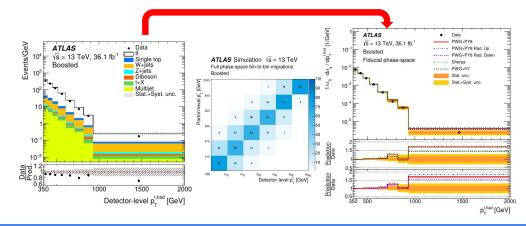
Total *tt* cross section measurements in ATLAS


Differential cross section

Cross-section can be measured "*differentially*",
 i.e. as a function of kinematic properties of final state

$$\sigma(pp \to t\bar{t}) \longrightarrow \frac{\frac{d\sigma(pp \to t\bar{t})}{dm_{t\bar{t}}}}{\frac{d\sigma(pp \to t\bar{t})}{dp_T^t}}$$
$$\frac{\frac{d\sigma(pp \to t\bar{t})}{dY_{t\bar{t}}}}{\frac{d\gamma(pp \to t\bar{t})}{dY_{t\bar{t}}}}$$

...


arXiv:1705.04105 - Mitov et al.

The unfolding technique

- Unfolding is:
 - removal of detector resolution effects from observed distribution, to extract (our best-guess of) underlying true distribution
 - i.e. extraction of a **differential cross-section**
- Can be done to extract:
 - total-phase-space or fiducial-phase-space cross-sections
 - cross-sections vs. variable defined at particle-level or at parton-level
- The unfolding problem can be essentially reduced to a **response-matrix**-inversion problem

Comparison of results with predictions

2019, $\sqrt{s} = 13 \text{ TeV}$, $\int L = 36 \text{ fb}^{-1}$

Eur. Phys. J. C 79 (2019) 1028 ● ℓ + jets differential *Just one example out of many analyses... ... and just 3 observables out of a many many ones!*

- $1/\sigma_{f\bar{f}} \cdot d\sigma_{f\bar{f}} \, / \, dp_T^t \, [1/GeV]$ $1/\sigma_{t\bar{t}} \cdot d\sigma_{t\bar{t}} / dm^{t\bar{t}} [1/GeV]$ $1/\sigma_{t\bar{t}} \cdot d\sigma_{t\bar{t}} / d|y^{t\bar{t}}$ Data Data Data ATLAS ATLAS ATLAS PWG+PY8 PWG+PY8 - PWG+PY8 √s = 13 TeV. 36.1 fb⁻ $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb √s = 13 TeV. 36.1 fb ----- NNLO (NNPDF3.1) ----- NNLO (NNPDF3.1) NNLO (NNPDF3.1) 10^{-1} 1 I I I I 10-Stat. unc. Stat. unc. Stat. unc. Resolved Resolved Resolved Stat.+Syst. unc. Stat.+Syst. unc. Stat.+Syst. unc. Full phase-space Full phase-space Scale+PDF unc. Full phase-space Scale+PDF unc. Scale+PDF unc 10^{-2} 10-4 0.6 10-3 10-0.4 10^{-4} 10-0.2 10^{-5} 10^{-5} Prediction Data Prediction Data Prediction Data 1.2 1.2 0.8 0.8 0.9 2000 325 1000 ō 400 600 800 1000 500 1500 0.5 1.5 2.5 p^t_[GeV] m^{tī} [GeV] |y^{tt}|
 - Useful to test & tune theoretical predictions, Monte Carlo simulation, PDFs..
 - or to look for new physics effects!

