Third HEP Graduate Workshop

Observables and averages

An observation in particle physics is

$$
\langle O\rangle=\int_{\Delta} d \phi_{n} \frac{d \sigma(A, B \rightarrow n \text { particles })}{d \phi_{n}} O\left(\phi_{n}\right)
$$

phase space: sample of all quantum numbers (momentum, flavor...) of particles in scattering final state
differential cross section \approx transition probability to scattering final state

Compare to expectation value in statistics:

\Rightarrow Calculate "theory predictions" for O with statistical methods.

Monte-Carlo vs analytic computations

Dedicated calculations : Evaluate analytic expressions on paper...or very likely a computer. Safe \& fast, but only viable for "simple" problems
Monte Carlo generators : Approximate analytic expressions numerically, by statistical sampling on a computer. Use Monte-Carlo methods to handle complex scattering final states and/or observations.

Integration and averages

Monte-Carlo algorithms are simple enough to have wide applicability, e.g. in integration

$$
\int_{x_{-}}^{x_{+}} d x f(x)=\left(x_{+}-x_{-}\right)\langle f\rangle \approx \frac{\left(x_{+}-x_{-}\right)}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

The approximation errors is $\propto \frac{1}{\sqrt{N}}$, independent of number of integrations $\left(d x \rightarrow d x_{1} \cdots d x_{n}\right)$
Ideally suited for our types of integrals

$$
\langle O\rangle=\int d \Phi_{n} \frac{d \sigma_{n}}{d \Phi_{n}} O\left(\Phi_{n}\right) \propto \frac{1}{N} \sum_{i=1}^{N} \frac{d \sigma_{n}}{d \Phi_{n}}\left(\Phi_{n}^{(i)}\right) O\left(\Phi_{n}^{(i)}\right)
$$

May even store the events $\Phi_{n}^{(i)}$ with event weight $\frac{d \sigma_{n}}{d \Phi_{n}}\left(\Phi_{n}^{(i)}\right)$ and evaluate $O\left(\Phi_{n}^{(i)}\right)$ later!

NB: Les Houches Event Files are effectively that.

Collisions: a pictorial view

A high-energy scattering breaks the beams apart

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time
...and initiate further radiation "showers".

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time
...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time
...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small
...leading to the nucleation of excited or unstable hadrons

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time
...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small
...leading to the nucleation of excited or unstable hadrons
...which decay into stable states

Collisions: a pictorial view

A high-energy scattering breaks the beams apart
...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time
...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small
...leading to the nucleation of excited or unstable hadrons
...which decay into stable states.
[outside MCEG: interactions with the detector material occur, anal-
 ysis objects are reconstructed]

Divide et impera

The sampling (=event generation) of complicated phase space points $\Phi_{n}^{(i)}$, and the calculation of $\frac{d \sigma_{n}}{d \Phi_{n}}\left(\Phi_{n}^{(i)}\right)$ can (with some theory, and some hand-waving) be factorized into smaller problems:

A factorized at LHC, but not for neutrino experiments
C often factorized - but not for decays of long-lived particles

Monte-Carlo generators

The Monte-Carlo generator landscape is rich! Just to name a few:

```
Neutrino physics:
Genie, GiBUU, NuWro, NEUT...
```

```
Cosmic rays:
EPOS, QGSJET and SIBYLL
```

```
LHC physics:
Herwig, Pythia, Sherpa
Madgraph, Whizard, Alpgen...
LHC physics:
Herwig, Pythia, Sherpa
Madgraph, Whizard, Alpgen...
```

All of them amazing tools to learn about phenomenology. Focus here \approx LHC-type physics

Exercise: Get together with friends and chat about an event generator in an unfamiliar field.

Split into smaller problems

From a technical viewpoint, this chain of phenomena looks like
$d P$ (beams \rightarrow final state)
$=d P($ beams $\rightarrow A, B)$
$\otimes d P(A, B \rightarrow$ few partons $)$
$\otimes d P$ (few parton \rightarrow many partons)
$\otimes d P$ (many partons \rightarrow hadrons)
$\otimes d P$ (hadrons \rightarrow stable particles)

Very high integration dimension. Traditionally, only Monte-Carlo viable
\rightarrow Need to learn about numerical methods

Nowadays, deep nets can be used to simulate special cases.

Basic numerical techniques

An overview of some basic numerical techniques gives a feeling about how to tackle event generation.

In the following, we'll now look at

- Picking from a probability distribution, a.k.a. inversion sampling
- Hit-or-miss sampling, a.k.a. rejection sampling ...and we'll learn more tricks in the next lectures

Discrete transformation

Imagine several changes to a state could occur, e.g. different particle decays. How do you pick one?

Draw a random number $R \in[0,1]$. Pick

$$
\begin{aligned}
& \text { channel \#1 if } 0<R C_{3}<C_{1} \\
& \text { channel \#2 if } C_{1}<R C_{3}<C_{2} \\
& \text { channel \#3 if } C_{2}<R C_{3}<C_{3}
\end{aligned}
$$

Repeat as often as you like.

Q: Why go through the hassle?
A: Now, the rate of channel \#i is given by its population in the sample, and no longer by an "event weight". Every "event" has identical weight (C_{3}).

This is the discrete transformation method. It may be used to pick between different hard scattering processes, decay channels, or for unweighting.

Inversion sampling

The same algorithm applies when picking a continuous "index" y, i.e. picking a random variable according to a distribution (e.g. a phase-space point)

The cumulative distribution becomes

$$
C(y)=\int_{-\infty}^{y} d x p(x) \quad \text { with } \int_{-\infty}^{\infty} d x p(x)=1
$$

which allows using $R \in[0,1]$ and

$$
C(y)=R \quad \Rightarrow \quad y=C^{-1}(R)
$$

This is called inversion sampling.

Often, we're not so lucky that a uniquely invertible primitive function C^{-1} exists ...but we can often still use this method as part of a more flexible algorithm.

Exercise: Generate random variables $x>0$ with distribution $f(x)=e^{-x}$

Rejection sampling

We can circumvent the issue with rejection sampling (a.k.a. hit-or-miss).
Basic idea: Use a simple distribution to pick x from, adjust rate once x is generated.

Example: Calculate π by random sampling:

- Draw $x, y \in[0, r]$
- Accept pair if $x^{2}+y^{2}<r^{2}$
- (fraction of accepted pairs) will be $\propto \pi / 4$

In practise, "uniform sampling" often not sufficient - efficiency very bad!

Combining the two

Rejection sampling will be much more efficient if combined with inversion sampling:

- Assume a simple distribution $g(x)>f(x)$, i.e.

$$
f(x)=g(x) \underbrace{\frac{f(x)}{g(x)}}_{<1}
$$

- Use inversion sampling to draw x from $g(x)$.
- Draw $R \in[0,1]$. Reject x if $\frac{f(x)}{g(x)}<R$

\Rightarrow Accepted x now distributed according to $f(x)$. This algorithm is excessively used in Monte Carlo generators.

Comparison: Uniform sampling

$$
\operatorname{var}(f)_{M C} \approx \frac{\operatorname{var}(f)}{\sqrt{N}}
$$

error worse in regions of large variance...

Exercise: Generate random variables $0<z<1-\epsilon$ with distribution $P(z)=\frac{1+z^{2}}{1-z}$. Hint: Use a simpler numerator to get a simple $g(z) \ldots$

Measurements

Let's get back to physics for a bit :)
The measurement of an observable is

$$
\langle Q\rangle=\int_{\text {phase space }} d \phi_{n} \frac{d \sigma(A, B \rightarrow n \text { particles })}{d \phi_{n}} O\left(\phi_{n}\right)
$$

Sampling factorization

When sampling phase space,
avoid large event weight fluctuations
avoid excessive rejection rate
\Rightarrow Phase space generation separates enthusiasts from experts.

$$
d \Phi_{n}=\left[\prod_{i=1}^{n} \frac{d \vec{p}_{i}}{(2 \pi)^{3} 2 E_{i}}\right] \delta\left(p_{A}+p_{B}-\sum_{1}^{n} p_{i}\right)
$$

This $(3 n-4)$ dimensional integration can be sampled in factorized steps:

...we can continue until only simple integrations ($d \Phi_{2}, d \Phi_{3}$) remain, and then find a clever parameterization for those.

Example

"Clever" parameterizations need knowledge about $d \sigma$.

Example: Sampling of $d \Phi_{2}$ stemming from decay of resonance V :

$$
\frac{d \sigma_{n}}{d \Phi_{n}} \supset \frac{M_{V} \Gamma_{V}}{(\underbrace{\left(p_{1}+p_{2}\right)^{2}}_{=\hat{s}}-M_{V}^{2})^{2}+M_{V}^{2} \Gamma_{V}^{2}}
$$

The cumulative function is

$$
\begin{aligned}
C\left(\hat{s}_{\text {min }}, \hat{s}_{\text {max }}\right) & \propto I\left(\hat{s}_{\text {max }}\right)-I\left(\hat{s}_{\text {min }}\right) \\
& =\frac{1}{M_{V} \Gamma_{V}}\left[\operatorname{atan}\left(\frac{\hat{s}_{\text {max }}-M_{V}^{2}}{M_{V} \Gamma_{V}}\right)-\operatorname{atan}\left(\frac{\hat{s}_{\text {min }}-M_{V}^{2}}{M_{V} \Gamma_{V}}\right)\right]
\end{aligned}
$$

Finding the inverse, and using $R \in[0,1]$, we may draw \hat{s} according to

$$
\hat{s}=M_{V}^{2}+M_{V} \Gamma_{V} \tan \left(M_{V} \Gamma_{V}\left[I\left(\hat{s}_{\max }\right)-R C\left(\hat{s}_{\min }, \hat{s}_{\max }\right)\right]\right)
$$

Basic thought: know your integrand \& generate variables more often close to peaks.

Multichannel sampling

Differential cross sections have a rich structure. In that case, importance sampling can be combined with the discrete transformation method into multichannel sampling:

- Use $f(x) \leq g_{1}(x)+g_{2}(x)$
- Choose index $i \in\{1,2\}$ [using $P_{i}=\int d x g_{i}(x)$]
- Draw x from $g_{i}(x)$. Overall, x is now distributed according to $g_{1}+g_{2}$
- Draw $R \in[0,1]$, and accept if (i, x) pair if $\frac{f(x)}{g_{1}(x)+g_{2}(x)}>R$. Else reject \& restart.

NB: also heavily used in parton showers.

Exercise: Draw x from the distribution $f(x)=\frac{1}{\sqrt{x(1-x)}}$ using two integration channels.

All of these methods require (analytical) knowledge of the differential cross section which is often hard to come by.

Another way of "generating variables in integration regions where they matter most" is stratified sampling:

- Multichannel with $g_{i} \propto \max \{f\}$ in small integration region (=bin).
- Put more bins where variance of $f(x)$ is large.

This is the construction principle of VEGAS.
NB: Need to evaluate the function very often to learn good "integration grids".

Phase-space integrators in MCs are a mix of all of these methods, and recently also more modern machine learning techniques.

Hands on: session I

Worksheet link

