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Observables and averages
An observation in particle physics is

phase space: sample of all quantum numbers (momentum, flavor…) of particles in
scattering final state
differential cross section≈ transition probability to scattering final state

Compare to expectation value in statistics:

⇒ Calculate “theory predictions” for O with statistical methods.
3 / 86 1 / 18
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Monte-Carlo vs analytic computations

Dedicated calculations : Evaluate analytic expressions on paper…or very likely
a computer. Safe & fast, but only viable for “simple”
problems

Monte Carlo generators : Approximate analytic expressions numerically, by sta-
tistical sampling on a computer. Use Monte-Carlo
methods to handle complex scattering final states
and/or observations.

5 / 86 2 / 18
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Integration and averages

Monte-Carlo algorithms are simple enough to have wide applicability, e.g. in integration
∫ x+

x−

dxf(x) = (x+ − x−)⟨f⟩ ≈ (x+ − x−)
N

N∑

i=1

f(xi)

The approximation errors is ∝ 1√
N

, independent of number of integrations
(dx→ dx1 · · · dxn)
Ideally suited for our types of integrals

⟨O⟩ =
∫

dΦn
dσn

dΦn
O(Φn) ∝ 1

N

N∑

i=1

dσn

dΦn
(Φ(i)

n )O(Φ(i)
n )

May even store the events Φ(i)
n with event weight dσn

dΦn
(Φ(i)

n ) and evaluate O(Φ(i)
n ) later!

NB: Les Houches Event Files are effectively that.

7 / 86
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

…and initiate further radiation
“showers”.

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

…and initiate further radiation
“showers”.

Confining potentials form, once the
⟨E⟩ per particle is small

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

…and initiate further radiation
“showers”.

Confining potentials form, once the
⟨E⟩ per particle is small

…leading to the nucleation of ex-
cited or unstable hadrons

test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

…and initiate further radiation
“showers”.

Confining potentials form, once the
⟨E⟩ per particle is small

…leading to the nucleation of ex-
cited or unstable hadrons

…which decay into stable states
test
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Collisions: a pictorial view
A high-energy scattering breaks the
beams apart

…which initiates a cascade of radia-
tion in the vacuum.

Secondary interactions might occur
at the same time

…and initiate further radiation
“showers”.

Confining potentials form, once the
⟨E⟩ per particle is small

…leading to the nucleation of ex-
cited or unstable hadrons

…which decay into stable states.

[outside MCEG: interactions with
the detector material occur, anal-
ysis objects are reconstructed]

test
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Divide et impera
The sampling (=event generation) of complicated phase space points Φ(i)

n , and the
calculation of dσn

dΦn
(Φ(i)

n ) can (with some theory, and some hand-waving) be factorized
into smaller problems:

A factorized at LHC, but not for neutrino experiments
C often factorized – but not for decays of long-lived particles

10 / 86 5 / 18
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Monte-Carlo generators

The Monte-Carlo generator landscape is rich! Just to name a few:

Neutrino physics:
Genie, GiBUU, NuWro, NEUT…

Cosmic rays:
EPOS, QGSJET and SIBYLL

Heavy ions:
HIJING, AMPT, JEWEL…

LHC physics:
Herwig, Pythia, Sherpa
Madgraph, Whizard, Alpgen…

All of them amazing tools to learn about phenomenology. Focus here ≈ LHC-type
physics

Exercise: Get together with friends and chat about an event generator in an unfamiliar field.

11 / 86 6 / 18
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Split into smaller problems

From a technical viewpoint, this chain of phenomena looks like

dP (beams → final state)
= dP (beams → A, B)
⊗ dP (A, B → few partons)
⊗ dP (few parton → many partons)
⊗ dP (many partons → hadrons)
⊗ dP (hadrons → stable particles)

Very high integration dimension. Traditionally, only Monte-Carlo viable
→ Need to learn about numerical methods

Nowadays, deep nets can be used to simulate special cases.

20 / 86 7 / 18
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Basic numerical techniques

An overview of some basic numerical techniques gives a feeling about how to tackle
event generation.

In the following, we’ll now look at
◦ Picking from a probability distribution, a.k.a. inversion sampling
◦ Hit-or-miss sampling, a.k.a. rejection sampling

…and we’ll learn more tricks in the next lectures

21 / 86 8 / 18
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Discrete transformation

Imagine several changes to a state could occur, e.g. different particle decays. How do
you pick one?

Draw a random number R ∈ [0, 1]. Pick
channel #1 if 0 < RC3 < C1

channel #2 if C1 < RC3 < C2

channel #3 if C2 < RC3 < C3

Repeat as often as you like.

Q: Why go through the hassle?
A: Now, the rate of channel #i is given by its population in the sample, and no longer
by an “event weight”. Every “event” has identical weight (C3).

This is the discrete transformation method. It may be used to pick between different
hard scattering processes, decay channels, or for unweighting.

22 / 86 9 / 18



co
u
rt
es
y
o
f
S
.P

re
st
el

Inversion sampling
The same algorithm applies when picking a continuous “index” y, i.e. picking a random
variable according to a distribution (e.g. a phase-space point)

The cumulative distribution becomes

C(y) =
∫ y

−∞
dxp(x) with

∫ ∞

−∞
dxp(x) = 1

which allows using R ∈ [0, 1] and

C(y) = R ⇒ y = C−1(R)

This is called inversion sampling.

Often, we’re not so lucky that a uniquely invertible primitive function C−1 exists
…but we can often still use this method as part of a more flexible algorithm.

Exercise: Generate random variables x > 0 with distribution f(x) = e−x

23 / 86 10 / 18
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Rejection sampling

We can circumvent the issue with rejection sampling (a.k.a. hit-or-miss).
Basic idea: Use a simple distribution to pick x from, adjust rate once x is generated.

Example: Calculate π by random sampling:
◦ Draw x, y ∈ [0, r]
◦ Accept pair if x2 + y2 < r2

◦ (fraction of accepted pairs) will be ∝ π/4

In practise, “uniform sampling” often not
sufficient – efficiency very bad!

24 / 86
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Combining the two
Rejection sampling will be much more efficient if combined with inversion sampling:

◦ Assume a simple distribution g(x) > f(x), i.e.

f(x) = g(x) f(x)
g(x)︸︷︷︸

<1

◦ Use inversion sampling to draw x from g(x).
◦ Draw R ∈ [0, 1]. Reject x if f(x)

g(x) < R

⇒ Accepted x now distributed according to f(x). This algorithm is excessively used in
Monte Carlo generators.

Comparison: Uniform sampling

var(f)MC ≈ var(f)√
N

error worse in regions of large variance…

Importance sampling
∫

dxg(x) f(x)
g(x)

≈ ⟨ f

g
⟩ ±

√
⟨f2/g2⟩ − ⟨f/g⟩2

N

Exercise: Generate random variables 0 < z < 1 − ϵ with distribution P (z) = 1+z2

1−z
. Hint: Use a

simpler numerator to get a simple g(z)… 25 / 86

12 / 18
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Measurements

Let’s get back to physics for a bit :)
The measurement of an observable is

…so we have to worry about
◦ sampling phase space points Φn

◦ calculating the differential cross section dσn
dΦn

◦ evaluating the observable

28 / 86 13 / 18



co
u
rt
es
y
o
f
S
.P

re
st
el

Sampling factorization
When sampling phase space,

avoid large event weight fluctuations
avoid excessive rejection rate

⇒ Phase space generation separates enthusiasts from experts.

dΦn =

[
n∏

i=1

dp⃗i

(2π)32Ei

]
δ(pA + pB −

n∑

1

pi)

This (3n− 4) dimensional integration can be sampled in factorized steps:

dΦn = dΦn−m+1
ds1m

2π
dΦm

…we can continue until only simple integrations (dΦ2, dΦ3) remain, and then find a
clever parameterization for those.

29 / 86 14 / 18
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Example
“Clever” parameterizations need knowl-
edge about dσ.

Example: Sampling of dΦ2 stemming
from decay of resonance V :

dσn

dΦn
⊃ MV ΓV(

(p1 + p2)2
︸ ︷︷ ︸

=ŝ

−M2
V

)2
+ M2

V Γ2
V

The cumulative function is

C(ŝmin, ŝmax) ∝ I(ŝmax) − I(ŝmin)

= 1
MV ΓV

[
atan

(
ŝmax − M2

V

MV ΓV

)
− atan

(
ŝmin − M2

V

MV ΓV

)]

Finding the inverse, and using R ∈ [0, 1], we may draw ŝ according to

ŝ = M2
V + MV ΓV tan (MV ΓV [I(ŝmax) − RC(ŝmin, ŝmax)])

Basic thought: know your integrand & generate variables more often close to peaks.
30 / 86 15 / 18
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Multichannel sampling

Differential cross sections have a rich structure. In that case, importance sampling can
be combined with the discrete transformation method into multichannel sampling:
◦ Use f(x) ≤ g1(x) + g2(x)
◦ Choose index i ∈ {1, 2} [using Pi =

∫
dxgi(x)]

◦ Draw x from gi(x). Overall, x is now distributed according to g1 + g2

◦ Draw R ∈ [0, 1], and accept if (i, x) pair if f(x)
g1(x)+g2(x) > R. Else reject & restart.

NB: also heavily used in parton showers.

Exercise: Draw x from the distribution f(x) = 1√
x(1−x)

using two integration channels.
31 / 86 16 / 18
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Vegas
All of these methods require (analytical) knowledge of the differential cross section –
which is often hard to come by.

Another way of “generating variables in integration regions where they matter most” is
stratified sampling:

◦ Multichannel with gi ∝ max{f} in small
integration region (=bin).
◦ Put more bins where variance of f(x) is
large.

This is the construction principle of VEGAS.

NB: Need to evaluate the function very often
to learn good “integration grids”.

Phase-space integrators in MCs are a mix of all of these methods, and recently also more modern
machine learning techniques.

32 / 86 17 / 18
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Hands on: session I

Worksheet link

18 / 18

https://pythia.org/download/pdf/worksheet8200.pdf

