

Third HEP Graduate Workshop

Physics Modeling May 25, 2022 Giancarlo Panizzo Università degli Studi di Udine & INFN - Gruppo collegato di Udine

Observables and averages

An observation in particle physics is

 $\langle 0 \rangle = \int d\phi_n \frac{d\sigma(A,B \to n, particles)}{d\phi_n} O(\phi_n)$ phase space differential value of the second second second lies

phase space: sample of all quantum numbers (momentum, flavor...) of particles in scattering final state

differential cross section \approx transition probability to scattering final state

Compare to expectation value in statistics:

<g>= Sdxf(x) g(x)
random variables
probability
function
distribution

 \Rightarrow Calculate "theory predictions" for O with statistical methods.

Monte-Carlo vs analytic computations

Dedicated calculations	:	Evaluate analytic expressions on paperor very likely a computer. Safe & fast, but only viable for "simple" problems
Monte Carlo generators	:	Approximate analytic expressions numerically, by sta- tistical sampling on a computer. Use Monte-Carlo methods to handle complex scattering final states and/or observations.

Monte-Carlo algorithms are simple enough to have wide applicability, e.g. in integration

$$\int_{x_{-}}^{x_{+}} dx f(x) = (x_{+} - x_{-}) \langle f \rangle \approx \frac{(x_{+} - x_{-})}{N} \sum_{i=1}^{N} f(x_{i})$$

The approximation errors is $\propto \frac{1}{\sqrt{N}}$, independent of number of integrations $(dx \rightarrow dx_1 \cdots dx_n)$ Ideally suited for our types of integrals

$$\langle O \rangle = \int d\Phi_n \frac{d\sigma_n}{d\Phi_n} O(\Phi_n) \propto \frac{1}{N} \sum_{i=1}^N \frac{d\sigma_n}{d\Phi_n} (\Phi_n^{(i)}) O(\Phi_n^{(i)})$$

May even store the events $\Phi_n^{(i)}$ with event weight $\frac{d\sigma_n}{d\Phi_n}(\Phi_n^{(i)})$ and evaluate $O(\Phi_n^{(i)})$ later!

NB: Les Houches Event Files are effectively that.

A high-energy scattering breaks the beams apart

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

...and initiate further radiation "showers".

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small

 \ldots leading to the nucleation of excited or unstable hadrons

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small

 \ldots leading to the nucleation of excited or unstable hadrons

...which decay into stable states

A high-energy scattering breaks the beams apart

...which initiates a cascade of radiation in the vacuum.

Secondary interactions might occur at the same time

...and initiate further radiation "showers".

Confining potentials form, once the $\langle E\rangle$ per particle is small

 \ldots leading to the nucleation of excited or unstable hadrons

...which decay into stable states.

[outside MCEG: interactions with the detector material occur, analysis objects are reconstructed]

Divide et impera

The sampling (=event generation) of complicated phase space points $\Phi_n^{(i)}$, and the calculation of $\frac{d\sigma_n}{d\Phi_n}(\Phi_n^{(i)})$ can (with some theory, and some hand-waving) be factorized into smaller problems:

A factorized at LHC, but not for neutrino experiments C often factorized – but not for decays of long-lived particles

Monte-Carlo generators

The Monte-Carlo generator landscape is rich! Just to name a few:

Neutrino physics: Genie, GiBUU, NuWro, NEUT... Cosmic rays:

EPOS, QGSJET and SIBYLL

Heavy ions: HIJING, AMPT, JEWEL... LHC physics: Herwig, Pythia, Sherpa Madgraph, Whizard, Alpgen...

All of them amazing tools to learn about phenomenology. Focus here \approx LHC-type physics

Exercise: Get together with friends and chat about an event generator in an unfamiliar field.

Split into smaller problems

From a technical viewpoint, this chain of phenomena looks like

 $dP(\text{beams} \rightarrow \text{final state})$

- $= dP(\text{beams} \rightarrow A, B)$
- $\otimes dP(A, B \rightarrow \text{few partons})$
- $\otimes dP$ (few parton \rightarrow many partons)
- $\otimes dP(\text{many partons} \rightarrow \text{hadrons})$
- $\otimes dP(hadrons \rightarrow stable particles)$

Very high integration dimension. Traditionally, only Monte-Carlo viable \rightarrow Need to learn about numerical methods

Nowadays, deep nets can be used to simulate special cases.

An overview of some basic numerical techniques gives a feeling about how to tackle event generation.

In the following, we'll now look at

- Picking from a probability distribution, a.k.a. inversion sampling
- Hit-or-miss sampling, a.k.a. rejection sampling

...and we'll learn more tricks in the next lectures

Discrete transformation

Imagine several changes to a state could occur, e.g. different particle decays. How do you pick one?

Draw a random number $R \in [0, 1]$. Pick channel #1 if $0 < RC_3 < C_1$ channel #2 if $C_1 < RC_3 < C_2$ channel #3 if $C_2 < RC_3 < C_3$ Repeat as often as you like.

Q: Why go through the hassle?

A: Now, the rate of channel #i is given by its population in the sample, and no longer by an "event weight". Every "event" has identical weight (C_3).

This is the <u>discrete transformation method</u>. It may be used to pick between different hard scattering processes, decay channels, or for <u>unweighting</u>.

Inversion sampling

The same algorithm applies when picking a continuous "index" y, i.e. picking a random variable according to a distribution (e.g. a phase-space point)

The cumulative distribution becomes

$$C(y) = \int_{-\infty}^{y} dx p(x)$$
 with $\int_{-\infty}^{\infty} dx p(x) = 1$

which allows using $R \in [0,1]$ and

$$C(y) = R \quad \Rightarrow \quad y = C^{-1}(R)$$

This is called inversion sampling.

Often, we're not so lucky that a uniquely invertible primitive function C^{-1} exists ...but we can often still use this method as part of a more flexible algorithm.

Exercise: Generate random variables x > 0 with distribution $f(x) = e^{-x}$

Rejection sampling

We can circumvent the issue with rejection sampling (a.k.a. hit-or-miss). Basic idea: Use a simple distribution to pick x from, adjust rate once x is generated.

Example: Calculate π by random sampling:

- $\circ \ \, {\rm Draw} \ \, x,y\in [0,r]$
- $\circ \ \ {\rm Accept \ pair \ if} \ x^2 + y^2 < r^2$
- $\circ~$ (fraction of accepted pairs) will be $\propto \pi/4$

In practise, "uniform sampling" often not sufficient – efficiency very bad!

24 /

Combining the two

Rejection sampling will be much more efficient if combined with inversion sampling:

• Assume a simple distribution g(x) > f(x), i.e.

$$f(x) = g(x) \underbrace{\frac{f(x)}{g(x)}}_{<1}$$

• Use inversion sampling to draw x from g(x).

• Draw
$$R \in [0, 1]$$
. Reject x if $\frac{f(x)}{g(x)} < R$

 \Rightarrow Accepted x now distributed according to f(x). This algorithm is excessively used in Monte Carlo generators.

Comparison: Uniform sampling

Importance sampling

$$\operatorname{var}(f)_{MC} \approx \frac{\operatorname{var}(f)}{\sqrt{N}}$$

importance sampling

$$\int dx g(x) \frac{f(x)}{g(x)} \approx \langle \frac{f}{g} \rangle \pm \sqrt{\frac{\langle f^2/g^2 \rangle - \langle f/g \rangle^2}{N}}$$

error worse in regions of large variance...

Exercise: Generate random variables $0 < z < 1 - \epsilon$ with distribution $P(z) = \frac{1+z^2}{1-z}$. Hint: Use a simpler numerator to get a simple g(z)...

25 /

Measurements

Let's get back to physics for a bit :) The measurement of an observable is

- ...so we have to worry about
 - \circ sampling phase space points Φ_n
 - calculating the differential cross section $\frac{d\sigma_n}{d\Phi_n}$
 - evaluating the observable

Sampling factorization

When sampling phase space,

avoid large event weight fluctuations

avoid excessive rejection rate

 \Rightarrow Phase space generation separates enthusiasts from experts.

$$d\Phi_n = \left[\prod_{i=1}^n \frac{d\vec{p_i}}{(2\pi)^3 2E_i}\right] \delta(p_A + p_B - \sum_1^n p_i)$$

This (3n - 4) dimensional integration can be sampled in factorized steps:

$$d\Phi_n = d\Phi_{n-m+1} \frac{ds_{1m}}{2\pi} d\Phi_m$$

...we can continue until only simple integrations $(d\Phi_2, d\Phi_3)$ remain, and then find a clever parameterization for those.

Example

"Clever" parameterizations need knowledge about $d\sigma.$

Example: Sampling of $d\Phi_2$ stemming from decay of resonance V:

$$\frac{d\sigma_n}{d\Phi_n} \supset \frac{M_V \Gamma_V}{\left(\underbrace{(p_1 + p_2)^2}_{=\delta} - M_V^2\right)^2 + M_V^2 \Gamma_V^2}$$

The cumulative function is

$$\begin{array}{ll} C(\hat{s}_{min},\hat{s}_{max}) & \propto & I(\hat{s}_{max}) - I(\hat{s}_{min}) \\ & = & \frac{1}{M_V \Gamma_V} \left[\operatorname{atan} \left(\frac{\hat{s}_{max} - M_V^2}{M_V \Gamma_V} \right) - \operatorname{atan} \left(\frac{\hat{s}_{min} - M_V^2}{M_V \Gamma_V} \right) \right] \end{array}$$

Finding the inverse, and using $R \in [0,1]$, we may draw \hat{s} according to

$$\hat{s} = M_V^2 + M_V \Gamma_V \tan\left(M_V \Gamma_V \left[I(\hat{s}_{max}) - RC(\hat{s}_{min}, \hat{s}_{max})\right]\right]$$

Basic thought: know your integrand & generate variables more often close to peaks.

Multichannel sampling

Differential cross sections have a rich structure. In that case, importance sampling can be combined with the discrete transformation method into multichannel sampling:

- Use $f(x) \le g_1(x) + g_2(x)$
- Choose index $i \in \{1,2\}$ [using $P_i = \int dx g_i(x)$]
- Draw x from $g_i(x)$. Overall, x is now distributed according to $g_1 + g_2$
- $\circ \ \ \, {\rm Draw} \ R\in [0,1], \ {\rm and} \ {\rm accept} \ {\rm if} \ (i,x) \ {\rm pair} \ {\rm if} \ \frac{f(x)}{g_1(x)+g_2(x)}>R. \ {\rm Else} \ {\rm reject} \ \& \ {\rm restart}.$

NB: also heavily used in parton showers.

Exercise: Draw x from the distribution $f(x) = \frac{1}{\sqrt{x(1-x)}}$ using two integration channels.

Vegas

All of these methods require (analytical) knowledge of the differential cross section – which is often hard to come by.

Another way of "generating variables in integration regions where they matter most" is stratified sampling:

This is the construction principle of VEGAS.

NB: Need to evaluate the function very often to learn good "integration grids".

 $\label{eq:phase-space-$

Hands on: session I

Worksheet link