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Disclaimer

• I am an ATLAS member

• Examples I will show are highly biased
– Personal preference
– ATLAS bias (please read ATLAS = CMS)

• The main messages are ~independent of these biases
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Approaching from both sides
• The HEP challenges

• The Machine Learning (ML) buffet
– (FF, CNN, RNN, GNN, DeepSets, transformers, VAE, GAN, NF,…)

• A lego-game of mix, match, augment,…
– Lots of fun R&D: exploit strengths vs. weaknesses

• A spin-off question: more generic solutions?
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Outline
• Establish the goal: maximize LHC’s sensitivity to new physics

• The supervised approach

• Extend LHC’s physics portfolio to model-agnostic searches

• The need for accurate and fast background modeling

• Machine learning strengths
– Better
– Automate
– Reduce complexity
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The current situation

The SM is complete

Success story!

Open mysteries remain

Dark matter, dark energy, 
quantum gravity,… 5



The theory guidance

• Hypothesize extensions of 
the SM
– Addressing SM shortcomings
– Leading to testable predictions

• Plethora of Beyond-the-SM 
extensions…
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The Large Hadron Collider (LHC)

Two objectives:
- Higgs discovery ✅
- New phenomena 🅾
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The ATLAS detector

- 40 MHz collision rate – online filter to record ~1kHz
- Thousands of particles per collision
- 100M readout channels, ~1% occupancy
- Trillions of collisions in data & simulation – hundreds of petabytes 8



The need for synthetic data 

Too complex to predict outcome of experiment from first principles
→ Monte Carlo simulation
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[Phys. Rev. D. 90 (2014) 052004]

The method of hypothesis testing

• Example: Higgs boson discovery:
– H0: no Higgs
– H1: null+Higgs

• Our standard inference approach:
• Reduce input data O(106) to O(1) 

human-engineered feature
• Far from ideal
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Toolbox: what is ML good for?

Search for something rare in a deluge of data:
1. We know the signal (i.e. label) – supervised ML
2. We do not know the signal (no labels) – unsupervised ML / 

anomaly detection
i. Partial/noisy labels - weakly-/semi-supervised ML

3. High-fidelity and high-speed modeling – generative ML

• Use Deep Neural Networks to make                                   
the best out of the data we have
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Analogy: searching the needle in the hay



1. Searching for the known
• Take theory guidance at face value

– We know how a needle & hay look like
• Supervised approach to fully exploit this knowledge
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Break problem down into physics objects

• Large statistics
• Multi-classification
• Maximum impact
• Excellent modeling
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Classify particles based on labeled
synthetic data (supervised)



Example: flavor tagging

• Domain in particle physics with longstanding and very 
active history of ML usage

• Successful exploration of:
– Data representations
– Learning algorithms
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B-tag mini-lecture

• Quark hadronizes to collimated 
bunch of hadrons = jet

• They come in flavors
– c-jet 
– b-jet
– light-jet

• Interesting physics: b, c
• Task: identify jet flavor
• Train on truth-labelled 

simulation data

16
[ATLAS experiment]

Visualizing a jet in a collision



B and C hadron features

• Long lifetime
• High mass
• High decay product multiplicity
• B hadron often decays to c-

hadron

• What we measure in the 
detector
– Reconstruct tracks (from hits)
– Extrapolate tracks to vertices
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Track feature: signed IP significance

Interpret this now as probability 
density functions pb, pc, pl

18https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014/


Hand-designed jet feature: IP2D

• Neyman–Pearson lemma:
– Log-likelihood-ratio (LLR) 

test has highest power to 
distinguish competing 
hypotheses

19https://cds.cern.ch/record/2765038?ln=en

Assumption
independent and identically 
distributed (i.i.d.) !!!

Can we really just
sum probabilities?

https://cds.cern.ch/record/2765038?ln=en


Putting it all together

Secondary vertex (SV) 
reconstruction & many 
other feature extractors

20https://cds.cern.ch/record/2765038?ln=en

https://cds.cern.ch/record/2765038?ln=en


Limitations of feedforward NNs

• FF NNs need a fixed-size number of ordered inputs

• The flavor-tagging input space consists of
– Hit reconstruction: variable number of measured 3D space points
– Track reconstruction: combine points to variable number of tracks per jet
– Vertex finding: extrapolate tracks to variable number of vertices per jet

• Ad-hoc workaround: 
– Fixed-size: zero-pad/truncate variable-size
– Ordered: leading N tracks

• NOT ideal – why?
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The kind of inputs: structured data
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x0 x1 x2 x3 x4

● Inputs are independent
● Each block is a different

variable
● Fixed-size input
● Fully connected layers ● Inputs have regular spatial 

separation
● Each block is the same

“variable”
● Convolutional networks 

x0 x1 x2 x3 x4

● Inputs come in a sequence
● Each block is the same

“variable”
● Logical order with dependence 

on what comes before/after
● Recurrent networks

Flat inputs Image-like inputs Time series



But what about unordered data? 
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x0 x1 x2 x3 x4 Arbitrary order

Forced structure/order

x0 x1 x2 x3 x4 Forced order

● Operate on nodes and edges
● Update nodes & edges based on connections
● Permutation invariant: no order enforced
● Variable-size input

Graph Networks



Tracks for flavor-tagging
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x0 x1 x2 x3 x4

x0 x1 x2 x3 x4

Independent inputs?  No!
Fully connected layers

Regular spatial separation? No!
Convolutional networks

Ordered data? No!
Recurrent networks

• Any input size
• Output invariant to order of inputs
• Same operation φ to each node
• Apply pooling ρ to output

Deep Sets: nodes without edges



Deep Impact Parameter Sets 
(DIPS)

• Jet = set of n tracks
• Each track : fixed-size number of features
• FF NN φ per track: track features → latent space
• FF NN F operates on sum up all tracks 

– Permutation invariant
– Handles input sets of any size (any number n of tracks)
– F accounts for the correlations between the tracks 

Probability for jet to be 
b, c or light:

pi = track features for 
track i

https://cds.cern.ch/record/2718948


Supervised++
• Substantial improvements for all physics objects

– Boosted jet tagging, taus, e/gamma,… also regression
– Flexible multi-classification

• Apply same idea at event level for signal vs. background 
for given signal hypothesis
– Inputs: high-level variables OR 4-vectors of objects

• I spare you long list of examples…
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The blemish:
No sign of physics 
Beyond the SM

27

• BSM physics not around the corner

• Current slow-growth era of the LHC: energy & luminosity

• Turning the crank?
– Negligible increase in sensitivity for most of the search program
– Signatures of new physics could be hiding in plain sight
– Hypothesis: we just have not looked in the right place yet



2. Searching for the unknown
• Discard theory guidance 

– Don’t know what we’re looking for in the hay
• Unsupervised approach to search for structure in the 

data

• Anomaly detection
– Outlier easy: Not a needle but maybe a shiny object…
– Inlier/over-density much harder but closer to reality: a tiny bit 

of special hay in a humongous haystack
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Assumptions
• Anomalies are rare – otherwise we would have seen them already

– No issues of overlapping anomalies

• Anomalies are localized – most prominent are resonances
– Can define signal region (SR) with enhanced anomalous events
– Control region (CR) depleted in anomalies

• The data is smooth – BG features vary slowly between SR & CR
– Can use CR data to estimate BG in SR

• Only interested in statistical statement of group anomaly
– Not trying to identify individual outliers
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Analogy: searching for anomalies in the desert

• Grain of sand ≙ LHC data collision
• What is an outlier
• What is an inlier / over-density
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Example of an outlier
• Anomalous monolith in the desert

• Imagine each data point is a
– photo of a grain of sand
– equivalent grain of monolith

• Grain of sand easily separable from grain of monolith
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[https://www.vox.com/culture/22062796/monoliths-utah-california-romania]

https://www.vox.com/culture/22062796/monoliths-utah-california-romania


Anomalous tracks in the 
desert

Example of an inlier / 
over-density

32

• Individual examples not anomalous
• Anomalous collective behaviour



Need to know your normal events before you 
can look for anomalous events

• Model of the desert • Model of our SM events
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Forward Monte Carlo modeling

34

Computing bottleneck: 
Monte Carlo simulation

Why?



One particle entering the calorimeter…

• Geant4: simulate at 
microscopic level 
interaction of particles 
with matter 

• Bottleneck: calorimeter 
simulation – up to 10 
min per 1 event

• ⇒ Need trillions of 
simulated events

35

What if we could minimize 
this computing bottleneck!?



Toolbox: generative modeling

36

Build a generator* which maps 
random numbers to structure

*Deep generative NN model:
• Generative Adversarial Network (GANs)
• Normalizing Flows (NFs)
• Variational Autoencoders (VAEs)



Toolbox: GAN

37

• Generative Adversarial Network

• Two-network game
– Generator G maps noise to 

structure
– Discriminator D tries to classify 

images as real or fake
– When D is maximally confused, G

will be a good generator



Toolbox: normalizing flows (NFs)

• Series of simple invertible transformations to map simple 
(Gaussian) distribution p(z) to complex data distribution 
pθ(x)
– Variable transformation: z → x
– Function fθ parameterized by NN
– Matching target pθ (x) by maximizing likelihood
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[ NF cont’d ]
• Applications:

– Importance sampling for Monte Carlo generation by learning 
weights to model cross-sections

– Calibration of synthetic data to real data
– Calibration of fast simulation to full simulation

• Limitation:
– Dimension preserving

• Can overcome this…
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Toolbox: Variational Autoencoder (VAE)

Information bottleneck: 
maximize encoded information

Probabilistic encoder: 
reduce dimensions

Latent space (with given prior): 
easy to sample from Probabilistic decoder: 

Reconstruct input

Input x: 
Raw data, simulated data,
features,…anything

1. Reconstruction mode
2. Generation mode

40



[ Data volume reduction ] 

• Lossy compression with auto encoders
• Only maintain key features in data
• Example: reduce bandwidth to increase event rate

41



Reconstruction mode

• Train on hay
• Apply to data: poor reconstruction for non-hay = anomaly

42



Generation mode

Sample from:

• Train on hay in reco mode
• Rapidly sample hay from a normal distribution

43



Can generate all sorts of things

[Karras et al., 2018]

44

[CaloFlow]

https://arxiv.org/pdf/2106.05285.pdf


VAE architecture

45[ATL-SOFT-PUB-2018-001, ATL-PLOT-SIM-2019-007]

After training: Decoder = Generator



Validation: 
marginals

46



Generative modeling assessment

• Promising results but bottlenecks exist: 
– Slow development cycle
– Expensive & inflexible training data (Geant4)
– Non-portable solution highly dependent on detector geometry*

• Objectives: 
– Faster R&D
– Decouple modeling from detector geometry → point cloud format

47* A Common Tracking Software (ACTS) – portable tracking solution



Geant4 point cloud exists already

48

Current: mapping to fixed cells (sparse)
Intensity = sum of energy in each cell 

Geant4 raw output: point cloud



The world of point-cloud data sets

• Existing public point cloud data sets
– Not a good proxy for physics data
– Improvements don’t generalize

• Costly and expertise-
requiring Geant4 simulation
– Hard to scale complexity, 

change geometry, detector,…

49

[source]

Sweet
spot
?

https://arxiv.org/pdf/1905.04571.pdf


The MNIST for generative modeling?

• Can we design flexible & 
configurable proxy data sets?

– Diagnostics tool to develop new 
generative surrogate simulators

– Point-cloud format promotes GNN-
based generative models

50

[https://arxiv.org/abs/2202.05012]

Simplified 
• particle propagation, 
• scattering & 
• shower development 

https://arxiv.org/abs/2202.05012


Need a simple model which is realistic enough

Do model design on 
proxy data set:

– Vary data complexity
– Optimize model
– Validation metrics

51[https://arxiv.org/abs/2202.05012]

Better m
odels

Show that proxy model tracks performance of Geant4 model

SUPA [SUrrogate PArticle propagation simulator]

https://arxiv.org/abs/2202.05012


Outlier 
detection
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VAE in reconstruction mode: 
search for anomalous boosted objects

53

Encode and decode “normal” objects / events

Compare original and reconstructed image

Encode Decode



Anomalous jets

54

“normal” 

“anomalous”

[1709.01087, 1808.08979, 1808.08992, 1905.12651, 2007.01850]

[https://ml4physicalsciences.github.io/20
20/files/NeurIPS_ML4PS_2020_56.pdf ]

Challenge: 
• Tool picks up mainly on 

dominant difference, i.e. the 
mass of the anomalous jet

https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_56.pdf


The problem with outlier detection

• Rarely true outliers in our data

• We look for an excess = over-density
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Constructing Unobserved Regions by 
Transforming Adjacent INtervals

All windows need CURTAINs

Data driven method for constructing
background templates with arbitrary variables

56[https://arxiv.org/pdf/2203.09470.pdf]

https://arxiv.org/pdf/2203.09470.pdf


Bump hunt

Focus on resonant signal = bump

Method:
1. Split spectrum into sliding SBs
2. Fit the distribution in SBs
3. Interpolate into the SR
4. Look for an excess

57

Signal
Region SideBand 2SideBand 1



Extended bump hunt

• Looking for tiny signal

• Increase sensitivity to new physics
– ⇒ use additional observables

• Observables often strongly correlated 
to the mass

• Interpolate to find BG template in SR

58

Signal
Region SideBand 2SideBand 1



CURTAINs approach

1. Transform data from the SBs into the SR

2. Transformed side bands = background template

3. Train a classifier to separate background from signal

59



Toolbox: optimal transport

• Transforming P into 
Q while minimizing a 
cost

• Cost based on 
distance d between 
data points

60

[source]

Originally about transporting dirt…

[Approximate Wasserstein distance with Sinkhorn]

https://www.microsoft.com/en-us/research/blog/measuring-dataset-similarity-using-optimal-transport/


Training “SB-to-SR” transformation

• Use a conditional invertible
neural network (cINN)

• Map from SB1 to SB2 and 
vice versa

61



CURTAINs validation

• Fix sidebands

• Define OuterBand (OB) 
validation regions

• Train CURTAINs transformer

• Validate on OBs

62

Validate
Train

Validate



Training data

• Training on the LHC Olympics 
R&D dijet dataset*
– Based on jet substructure & ΔRjj

• SB1 → SB2 
– as good for SB2 → SB1, OBs, 

SR 

63

SB1: [3200, 3400] GeV
SB2: [3600, 3800] GeV

*[https://doi.org/10.5281/zenodo.4536377] 

https://doi.org/10.5281/zenodo.4536377


CURTAINs so far

üTransform data from the SBs into the SR

üTransformed side bands = background template

qTrain a classifier to separate background from signal

64



A word on labels

• Supervised labels are inconsistent with our 
view of the data

• No notion of event label

• Only probability to be signal or background

65



Classification without labeling (CWoLa)

• Use noisy labels

• Shown to be optimal classifier

• Apply to data-only

• CWoLa for CURTAINs

66
[1702.00414, 1708.02949]

Noisy labels:

SR data BG template



CURTAINs in action

• True BG (Expected)

• Predicted BG from 
CURTAINs

• Add signal

67

Apply cut on 
CWoLa classifier



CURTAINs performance
• CURTAINs

• Idealised: assume perfect BG template

• CATHODE
– Competition: BG template from density estimates

• Supervised

68[CURTAINs > Idealised due to oversampling]



Summary

• Extend LHC’s physics portfolio to anomaly detection

• Key: robust background estimate
– Data-derived: CURTAINs
– MC modeling: speed & accuracy with generative models
– Work in progress: combine modeling & learning

• Promote automation & reduce complexity
69



Outlook: modeling vs. learning

The world of modeling
• The Standard Model of particle physics
• High-fidelity Monte Carlo simulation
• Fast & accurate surrogate models

The world of learning
• Learning from lots of LHC data

70

The best of both worlds?



Backup

71



SUPA propagation model
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Distance measure

How to estimate transformations of distributions over 
features?
We don’t have pairs, instead we want to shift one distribution to 
another

Optimal transport -Distance over batch, matching samples to 
closest neighbours
Map from SB1 to SB2 and vice versa, shuffling pairs every 
epoch
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