Beyond the Standard Model Searches at Colliders

Katharine Leney
Southern Methodist University, Dallas, Texas, US

Outline

Yesterday: Why and how we look for BSM physics

Today: New physics in the scalar sector

- Additional Higgs bosons.
- Using the Standard Model Higgs boson as a tool to search for new physics.
- Exotic decays of the Higgs boson
- Higgs self-coupling as a probe of new physics.

The Higgs boson as a portal to new physics

We're fairly certain that there must be new physics at some scale, but if this new physics doesn't interact with the weak, strong, or EM forces, then it may only be detectable in the Higgs sector.

- Additional Higgs bosons.
- Exotic decays of the Higgs boson, e.g. to dark matter.
- Non-SM couplings of the Higgs boson.
- Impact on the Higgs self-coupling.

Higgs couples to mass
\rightarrow different interaction strengths across
quark-lepton generations

Image: G. Carratta

Additional Higgs hosons

Extended Higgs sector

Extend the SM to have two Higgs doublets instead of one.

- 2 Higgs Doublet Model (2HDM)

Additional Higgs doublet yields five physical Higgs bosons:

- Two CP-even Higgs bosons, h , and H (one is the 125 GeV Higgs).
- CP-odd pseudoscalar, A.
- Two charged Higgs bosons, H^{+}and H^{-}

Describe in terms of six parameters:

- Four Higgs masses: $m_{h}, m_{H} m_{A}, m_{H \pm}$
- Ratio of the two vacuum expectation values of the doublets: $\tan \beta$
- Mixing angle (parametrises the mixing between the CP-even neutral Higgs): sin a

$$
\begin{aligned}
& \text { 2HDM } \\
& \text { prediction }
\end{aligned}
$$

Flavours of 2HDMs

Different types of 2HDM, depending on which types of fermions couple of which Higgs doublet.

Add a third Higgs doublet (3HDM)
\rightarrow get doubly-charged Higgs bosons, H^{++}and H^{-}as well.

Example: A boson decay in hMSSM

Searches for additional Higgs bosons

Similar set of results from CMS

$\mathrm{A} / \mathrm{H} \rightarrow \mathrm{TT}$

CMS-PAS-HIG-21-001
Recent CMS result searching for a new
 particle decaying to a pair of taus.

- Gluon fusion production.
- Produced in association with one or two b-quarks.

Two mild excesses:

- $95 \mathrm{GeV}(2.6 \sigma)$
- 1.2 TeV (2.8б)

To note:

- Significances reduce to 2.3σ and 2.4σ once the "look-elsewhere effect" is taken into account.
- 1.2 TeV excess is not observed by ATLAS.
- ATLAS has not done this analysis in the "low mass region".

$\mathbf{H}^{+} \rightarrow \mathbf{t h}$

Charged Higgs produced in association with a top quark and a b-quark.

- $\mathrm{H}+\rightarrow \mathrm{tb}$.
- Both top quarks \rightarrow Wb.

- One W $\rightarrow \ell$ v.
- Other $W \rightarrow$ qq.

Final state with one e $/ \mu$, missing $E_{T}, 4$ b-jets and 2 additional jets!

ATLAS analysis uses neural networks to separate signal from background.

- Dominant background process is ttbar produced in association with additional jets.

Exotic decays of the Riggs

Further extending 2HDMs

- $2 \mathrm{HDM}+\mathrm{S}$: Popular class of models where an additional scalar singlet, S , is introduced to the 2 HDM .
- S couples only to the two Higgs doublets, and gives rise to a light pseudoscalar, a.
- Different predictions for how the new pseudoscalar, a, couples to SM particles \rightarrow interpret results in different models to rule out regions of phase space.

ATLAS Preliminary

March 2021
Run 1: $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$
Run 2: $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$
$2 H D M+S$ Type-II, $\tan \beta=5$
---2 expected $\pm 1 \sigma$

- observed
\square Run 120.3 fb $^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mu \mu$
PRD 92 (2015) 052002
\square Run $120.3 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \gamma \gamma \gamma \gamma$ EPJC 76 (2016) 210
Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mu \mu \mu \mu$
$\mathrm{JHEP} 06(2018) 166$
Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bbbb}$
$\mathrm{JHEP} 10(2018) 031$
Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bbbb}$
PRD $102(2020) 112006$
Run $236.7 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \gamma \gamma \mathrm{gg}$
PLB $782(2018) 750$
Run $2139 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bb} \mu \mu$
ATLAS-CONF-2021-009

Similar set of results from CMS

ATLAS Preliminary
March 2021
Run 1: $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$
Run 2: $\sqrt{s}=13 \mathrm{TeV}$
$2 H D M+S$ Type-IV, $\tan \beta=0.5$
---2 expected $\pm 1 \sigma$

- observed

Run $120.3 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mu \mu \tau \tau$ \square PRD 92 (2015) 052002
Run $120.3 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \gamma \gamma \gamma \gamma$ EPJC 76 (2016) 210
\square Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow$ aa $\rightarrow \mu \mu \mu \mu$ JHEP 06 (2018) 166
\square Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bbbb}$
\square JHEP 10 (2018) 031
\square Run $236.1 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bbbb}$
PRD 102 (2020) 112006

- Run $236.7 \mathrm{bb}^{-1} \mathrm{H}$ (\rightarrow PLB 782 (2018) 750
\square Run $2139 \mathrm{fb}^{-1} \mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{bb} \mu \mu$
- ATLAS-CONF-2021-009

$H \rightarrow \mathbf{a a} \rightarrow 4 \boldsymbol{Y}$

CMS analysis probing extremely low mass pseudoscalars ($0.1<\mathrm{m}_{\mathrm{a}}<1.2 \mathrm{GeV}$).

Yy pairs merged in calorimeter

- Normal photon identification algorithms inefficient.
- Developed specialised tagging algorithm to identify these merged photons.

$\mathrm{H} \rightarrow \mathrm{aa} \rightarrow \mathrm{b} \mathbf{b} \mu \mu$

Phys. Rev. D 105 (2022) 012006

ATLAS search for events with two b-jets and two muons.

- $\mathrm{m}_{\mathrm{bb}} \approx \mathrm{m}_{\mu}$
- Invariant mass of bbu system compatible with coming from the Higgs
- Use BDTs to improve separation of signal from backgrounds.

3.3σ excess at $\mathrm{m}_{\mathrm{a}}=52 \mathrm{GeV}$.
- Reduces to 1.7σ when accounting for the lookelsewhere effect

$H \rightarrow Z_{(d)} Z_{d} \rightarrow 4 \ell$

HDBS-2018-55

ATLAS analysis probing Higgs decay to dark vector gauge bosons (mediating interactions between dark matter and SM particles).

- 4 lepton final state very clean.
- Remember $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \ell$ was one of the two Higgs discovery channels!
- Explore 1 GeV < $\mathrm{m}_{\mathrm{zd}}<60 \mathrm{GeV}$.

$\left\langle\mathrm{m}_{\ell \ell}\right\rangle[\mathrm{GeV}]$

$\left\langle\mathrm{m}_{\ell \ell}\right\rangle[\mathrm{GeV}]$

Higgs and dark matter

Example: Higgs produced via vector boson fusion and decaying to dark matter particles, X.

- Constrain $\mathrm{BR}(\mathrm{H} \rightarrow$ invisible $)$ to be $<14.5 \%$.
- Similar analysis from CMS: BR < 18\%.
- Also consider scenarios where the " H " in the diagram is a BSM Higgs boson.
- $50 \mathrm{GeV}<\mathrm{m}_{H}<2 \mathrm{TeV}$.

Signature:

- Two forward jets (proton remnants from VBF interaction)
- Large missing energy (χ does not interact in the detector)

BSM couplings of the Higgs

Constraints from Higgs measurements

Precise predictions from the SM about how the Higgs boson should be produced and decay.
\rightarrow Measure these processes!

- New physics may be subtle.
- Detect it by looking for new types of interactions.
- New physics would yield new interactions, with different theoretical models having different effects on different couplings.
- Test how new couplings can be accommodated within the precision our measurements allow.
- If there are high-mass phenomena far beyond the reach of the LHC's collision energy these sorts of techniques may be the only way we can detect them.

$\sigma \times B$ normalized to SM

Constraints from Higgs measurements

Constraints from fits to SM Higgs couplings:

- BR(H \rightarrow invisible) $<9 \%$
- Higgs decays identified with missing ET signature.
- $\mathrm{BR}(\mathrm{H} \rightarrow$ undetected $)<19 \%$
- Decays to which we are not sensitive, e.g. to light quarks or undetected BSM particles that don't have large missing E_{T} in the final state.

Complementary to direct searches \rightarrow sometimes able to rule out regions of parameter space that direct searches are not sensitive to.

ATLAS-CONF-2020-027
ATLAS-CONF-2020-052 ATLAS-CONF-2020-053

Probing Higgs properties

Tremendous advances in our understanding of the Higgs boson since its discovery in 2012..

... but still very little knowledge about the shape of the Higgs potential.

Electroweak Symmetry Breaking

$$
V(h) \simeq \frac{1}{2} m_{H}^{2} h^{2}+\lambda v h^{3}+\frac{1}{4} \lambda h^{4}+\ldots
$$

Electroweak Symmetry Breaking

$$
V(h) \simeq \frac{1}{2} m_{H}^{2} h^{2}+\lambda v h^{3}+\frac{1}{4} \lambda h^{4}+\ldots
$$

m_{H}

$$
\begin{gathered}
m_{H}=\sqrt{2 \lambda v} \approx 125 \mathrm{GeV} \\
\lambda_{\mathrm{SM}} \approx 0.13
\end{gathered}
$$

Electroweak Symmetry Breaking

$$
V(h) \simeq \frac{1}{2} m_{H}^{2} h^{2}+\lambda v h^{3}+\frac{1}{4} \lambda h^{4}+\ldots
$$

Directly measure $\lambda_{н н н}$ via HH production

Electroweak Symmetry Breaking

$$
m_{y}=0
$$

$$
m_{w}, m_{z} \neq 0
$$

$$
V(h) \simeq \frac{1}{2} m_{H}^{2} h^{2}+\lambda v h^{3}+\frac{1}{4} \lambda h^{4}+\ldots
$$

Out of reach for HL-LHC.
. probably.

Stability of the Universe

Stability of the Universe

Stability of the Universe

The Higgs Boson and the Early Universe

Nature of electroweak phase transition is unknown...

Baryogenesis requires a first order electroweak phase transition.
First-order electroweak phase transition requires new physics that interacts with the Higgs boson.
\rightarrow Leads to a large (O1) modification to the Higgs self-coupling.

Noble, Perelstein

Some inflation models require that the Higgs couples to gravity.
\rightarrow Modifies the shape of the potential

Shape of the Higgs Potential

Measurements of HH can provide discrimination between different scenarios and models.

HH production at the LHC

Cross-section $\sim 1000 x$ smaller than single Higgs

The Unbearable Lightness of $\mathrm{m}_{\text {нн }}$

Cross-section and shape of $\mathrm{m}_{\boldsymbol{н}}$ distribution changes with the self-coupling strength $K_{\lambda}\left(=\lambda / \lambda_{S M}\right)$

Destructive interference between the 'triangle' and 'box' diagrams

HH Decay Modes

	bb	WW	TT	ZZ	YY
bb	34%				
WW	25%	4.6%			
$\mathrm{~T} \mathrm{\tau}$	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

All channels have trade-offs between
branching ratio vs final state

No single 'golden channel'

HH Decay Modes

	bb	WW	TT	ZZ	YY
bb	34%				
WW	25%	4.6%			
$\tau \tau$	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

$\mathrm{HH} \rightarrow$ bbbb

- Largest branching ratio
- Challenging multi-jet backgrounds ATLAS-CONF-2021-035

HH Decay Modes

	bb	WW	TT	ZZ	YY
bb	34%				
WW	25%	4.6%			
$\tau \tau$	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

$\mathrm{HH} \rightarrow$ bbtt

- Moderate branching fraction.
- Presence of hadronic taus (and light lepton in $\tau_{e} \tau_{h}$ channel) effective at rejecting multi-jet backgrounds.
- EW and top backgrounds mimic signal.

ATLAS-CONF-2021-030

HH Decay Modes

	bb	WW	TT	ZZ	YY
bb	34%				
WW	25%	4.6%			
$\tau \tau$	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH \rightarrow bby

- Tiny branching fraction.
- Very clean final state.
- Excellent di-photon mass resolution.

ATLAS-CONF-2021-016

ATLAS HH \rightarrow bbyy

Branching ratio $\mathrm{HH} \rightarrow$ bbyy : 0.26\%
< 6 jets ($\mathrm{p} T>25 \mathrm{GeV},|\eta|<2.5$)

Two b-tagged jets ($\varepsilon=77 \%$)

At least 2 photons
$105 \mathrm{GeV}<\mathrm{m}_{\mathrm{yy}}<160 \mathrm{GeV}$

No e/ μ in the event

ATLAS HH \rightarrow bbyy

BDTs to separate signal from backgrounds.
Low and high mass regions targeted separately.

$$
m_{b b \gamma \gamma}^{*}=m_{b b \gamma \gamma}-m_{b b}-m_{\gamma \gamma}+250 \mathrm{GeV}
$$

\rightarrow improves 4-body resolution

Targets BSM к λ

Most sensitive for SM

ATLAS HH \rightarrow bbtт

See also CMS HH \rightarrow bbtt result: CMS-PAS-HIG-20-010

ATLAS-CONF-2021-030

Branching ratio $\mathrm{HH} \rightarrow$ bbtt : 7.3\%

> Fully hadronic channel $$
\operatorname{BR}\left(\tau_{h} \tau_{h}\right)=42.0 \%
$$

Two b-tagged jets ($\varepsilon=77 \%$)

Two hadronic taus

No e/ μ in the event
$m_{\tau \tau}>60 \mathrm{GeV}$

ATLAS HH \rightarrow bbтt

See also CMS HH \rightarrow bbtr result: CMS-PAS-HIG-20-010
ATLAS-CONF-2021-030
Branching ratio $\mathrm{HH} \rightarrow$ bbtt : 7.3\%
Semi-leptonic channel
$\operatorname{BR}\left(\mathrm{t}_{e} \boldsymbol{\tau}_{\mathbf{h}}\right)=45.6 \%$

ATLAS HH \rightarrow bbtт

Use BDTs and NNs to separate signal from backgrounds.

Top quark processes (true taus):
Shape from MC, normalisation from fit.

Z \rightarrow т $\boldsymbol{+}$ + heavy flavour:
Shape from MC, normalisation from $Z \rightarrow e e / \mu \mu$

+ heavy flavour control region.

Single Higgs \& others

Estimated from MC
Fake tau backgrounds
Estimate rate for jets to fake taus from data.

ATLAS combination (HH \rightarrow bbyy, bbтт)

CMS HH \rightarrow bbbb

CMS-HIG-20-005
 CMS-B2G-22-003

Resolved analysis

Higgs bosons have low-moderate $p_{\text {т }}$ and the b-jets can be resolved into individual jets using standard jet reconstruction algorithms

Boosted analysis
Higgs bosons have high p_{T} so the decay products (b-jet pair) are close together - reconstruct both in a "large radius" jet

CMS HH \rightarrow bbbb

CMS-HIG-20-005
CMS-B2G-22-003

VBF channels
Use BDTs to separate gluon fusion and vector boson fusion production modes (VBF events typically characterised by two high p_{T} jets, with large $m_{j j}$ and large $\Delta \eta$.)

CMS HH \rightarrow bbbb

CMS-HIG-20-005
CMS-B2G-22-003

Use BDTs to separate signal from backgrounds in different analyses/ channels.

Main challenges:

- Pairing b-jets into Higgs candidates - difficult to do this without sculpting background to look like signal.
- Estimate large multijet background - re-weight data with 3 b-jets to look like 4 b-jet data - hard to model accurately (large uncertainties).

Resolved analysis
Observed (expected) limit at 95\% confidence level: 3.9 (7.8) x SM prediction.

Resonant Higgs Pair Production

New physics is required if $\mathrm{K} \lambda \neq 1$
Many beyond the Standard Model theories predict new particles that can decay to a pair of Higgs bosons

ATLAS resonant HH (bbyp, bbтt, bbbb)

The future of searches

HL-LHC

Expect $\sim 20 x$ the current dataset with the HL-LHC

Summary

Tall the News
 We Hoge to Prive
 The aletu Hork Times
 Special Eation

Back Up

Why haven't we found anything yet?

How can we make more new particles?

1. Increase the collision energy.

The LHC is the "energy frontier"
Many new physics searches done at ATLAS and CMS are searching for increasingly heavier particles

If we put more energy into the collisions then it's easier to create them $\left(E=m c^{2}\right)$.

How can we make more new particles?

1. Increase the intensity of the collisions

More proton-proton collisions per second per unit area (even at lower energies) means more interactions and more chances to make new BSM particles (if they exist!)

How can we make more new particles?

1. Increase the intensity of the collisions

More proton-proton collisions per second per unit area (even at lower energies) means more interactions and more chances to make new BSM particles (if they exist!)

HL-LHC

Average of 60 proton collisions per bunch crossing during Run 2

HL-LHC

Increasing to $<\mu>\sim 130$ in Run 4, and eventually even higher ($<\mu>\sim 300$) in Run 5.

Revisiting the proton

Simplified picture of a proton:
up quark

- 3 primary quarks
- 2 up-quarks
- 1 down-quark
- Quarks are bound together by the strong force (carried by gluons)

Revisiting the proton

Simplified picture of a proton:
up quark

- 3 primary quarks
- 2 up-quarks
- 1 down-quark
- Quarks are bound together by the strong force (carried by gluons)

This picture is otherwise horribly wrong!

Revisiting the proton

(Slightly) more accurate picture of a proton:

Most of the proton's structure comes from the activity of the gluons, and the fact that virtual quark-anti-quark pairs are popping in and out of existence (thanks to the strong energy field).

When protons collide

The energy carried by all of the quarks and gluons inside the proton can be used to create new heavy particles.

When protons collide

Gluons are abundant in the proton
They love to make quarks (strong force couples to quarks and gluons)

The Higgs boson (and other new Higgs-like particles that may be lurking in the data) is most likely to interact with heavy things (like top and bottom quarks).

Jokes

The bartender says, "We don't serve tachyons in here."

A tachyon walks into a bar.

A bar walks into a man... oops, wrong reference frame.

A neutrino walks through a bar.

What did one photon say to the other photon?

"I'm sick and tired of your interference."

What is blue and smells like red paint?

Red paint moving very fast towards you.

Schrodinger and Heisenberg were out driving together when they were pulled over by a policeman.
The policeman walks up to the window and asks, "Sir, do you know how fast you were going?"
Heisenberg replies, "No, but II know exactly where I was."
The policeman is unamused and orders the physicists to open their car boot. He looks in and sees a dead cat.
"Do you know there is a dead cat in your trunk?"
Schrodinger replies, "Well, I do now!"

