
Third HEP Graduate Workshop

Physics
Modeling
May 26, 2022
Giancarlo Panizzo Università degli Studi di

Udine & INFN - Gruppo collegato di Udine

Hands on session

You can find (similar) material here:
Worksheet link

(there you can find many more details/topics).
Another useful link:

Online Pythia8.3 manual link

1 / 21

https://pythia.org/download/pdf/worksheet8200.pdf
https://pythia.org/latest-manual/Welcome.html

I. Event generation

2 / 21

A ”Hello World” program

// Headers and Namespaces.

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Top:gg2ttbar = on"); // Switch on process: ttbar production

pythia.readString("Beams:eCM = 13000."); // 13 TeV CM energy.

pythia.readString("PartonLevel:all = off"); // swith off showering

pythia.readString("HadronLevel:all = off"); // switch off hadronization

pythia.init(); // Initialize; incoming pp beams is default.

// Generate event(s).

pythia.next(); // Generate an(other) event. Fill event record.

return 0;

} // End main program with error-free return.

3 / 21

Compiling and running

The examples/Makefile has been set up to compile all mymainNN.cc, NN = 01
- 99, and link them to the lib/libpythia8.a library, just like the mainNN.cc

ones. Therefore you can compile and run mymain01 as:

make mymain01

./mymain01 > myout01

It is important to remember that you need to compile your code each time that
you modify it. If you want to pick another name, or if you need to link to more
libraries, you have to edit examples/Makefile appropriately.

4 / 21

Questions

By inspection of your output myout01, do you understand

1 how many events have you generated?

2 which decay channel does your tt̄ event belong to?

5 / 21

The event record

• no: the index number of the particle (i above);

• id: the PDG particle identity code (method id());

• name: a plaintext rendering of the particle name (method name()), within
brackets for initial or intermediate particles and without for final-state ones;

• status: the reason why a new particle was added to the event record
(method status());

• mothers and daughters: documentation on the event history (methods
mother1(), mother2(), daughter1() and daughter2());

• colours: the colour flow of the process (methods col() and acol());

• px , py , pz and e: the components of the momentum four-vector (px, py,
pz , E), in units of GeV with c = 1 (methods px(), py(), pz() and e());

• m: the mass, in units as above (method m())
6 / 21

Identity codes

A complete specification of the PDG codes is found in the “Review of Particle
Physics”. An online listing is available here.
A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K 0 221 η 313 K ∗0 2212 p
3 s 13 µ− 23 Z 0 321 K+ 331 η′ 323 K ∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K 0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K 0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

• Antiparticles (where separate entities): negative sign

• Simple meson and baryon codes: constructed from constituent (anti)quark codes+final spin-state-counting digit 2s + 1 (K0
L,S being

exceptions)

7 / 21

http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf

Status codes

When a new particle is added to the event record, it is assigned a positive status
code that describes why it has been added, as follows (see online manual):

• whenever a
particle is
allowed to
branch/decay
further its
status code is
negated

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiparton interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

I notice: it is never removed from the event record!

• only particles in the “final state” remain with positive codes.

I the isFinal() method returns true/false for ± status codes
8 / 21

Questions

By inspection of your output myout01, do you understand

1 which particles collided/branched/decayed?

2 if particles in your “final state” have daughters?

9 / 21

Exercise

• Modify your script to produce 100 events

I Hint: you don’t need to initialize pythia for each event

• print also on screen the event number every 10 events, to check if
your changes are effective

Question: is the event info printed for all your events?

10 / 21

Solution

// Headers and Namespaces.

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Top:gg2ttbar = on"); // Switch on process: ttbar production

pythia.readString("Beams:eCM = 13000."); // 13 TeV CM energy.

pythia.readString("PartonLevel:all = off"); // swith off showering

pythia.readString("HadronLevel:all = off"); // switch off hadronization

pythia.init(); // Initialize; incoming pp beams is default.

// Generate event(s).

for (int iEvent = 0; iEvent < 100; ++iEvent) {

if (iEvent%10==0) std::cout << "INFO: event "<< iEvent<< endl;

pythia.next(); // Generate an(other) event. Fill event record.

}

return 0;

} // End main program with error-free return.

Answer: no, the event info is printed only for the first event. Use e.g.
readString("Next:numberShowProcess = 5").

11 / 21

Hard scattering event analysis

We now would like to use ROOT to plot some “parton level” distributions. We
need to link our program to the ROOT library: open your examples/Makefile
and change

User-written examples for tutorials, without external dependencies.

mymain%: $(PYTHIA) mymain%.cc

$(CXX) $@.cc -o $@ $(CXX_COMMON)

into

User-written examples for tutorials, linked now to ROOT

mymain%: $(PYTHIA) mymain%.cc

ifeq ($(ROOT_USE),true)

$(CXX) $@.cc -o $@ -w $(CXX_COMMON) $(ROOT_LIB)\

‘$(ROOT_CONFIG) --cflags --glibs‘

else

$(error Error: $@ requires ROOT)

endif

12 / 21

Exercise

The example main91.cc shows how to interface ROOT with a main program.
Starting from this

cp main91.cc mymain02.cc

create a second mymain02.cc program drawing a plot of the top quark pT in the
hard scattering.
Hints:

• Replace all readString() calls with the ones from your previous example

• We are modeling (until now) only the hard scattering. A good way to
iterate on partons in the process is then:

// Loop over particles in event. Find last top copy. Fill its pT.

int iTop = -1;

for (int i = 0; i < pythia.process.size(); ++i)

if (pythia.process[i].id() == 6) iTop = i;

if (iTop>-1) toppt->Fill(pythia.process[iTop].pT());

13 / 21

Solution
// Header file to access Pythia 8 program elements.

#include "Pythia8/Pythia.h"

// ROOT, for histogramming.

#include "TH1.h"

// ROOT, for interactive graphics.

#include "TVirtualPad.h"

#include "TApplication.h"

// ROOT, for saving file.

#include "TFile.h"

using namespace Pythia8;

int main(int argc, char* argv[]) {

// Create the ROOT application environment.

TApplication theApp("hist", &argc, argv);

// Create Pythia instance and set it up to generate hard QCD processes

// above pTHat = 20 GeV for pp collisions at 14 TeV.

Pythia pythia;

pythia.readString("Top:gg2ttbar = on"); // Switch on process: ttbar production

pythia.readString("Beams:eCM = 13000."); // 13 TeV CM energy.

pythia.readString("PartonLevel:all = off"); // swith off showering

pythia.readString("HadronLevel:all = off"); // switch off hadronization

pythia.readString("Next:numberShowProcess = 5"); // print first five events

pythia.init();

14 / 21

Solution
// Create file on which histogram(s) can be saved.

TFile* outFile = new TFile("hist.root", "RECREATE");

// Book histogram.

TH1F *toppt = new TH1F("toppt","top pt", 20, 0, 1000.);

// Begin event loop. Generate event; skip if generation aborted.

for (int iEvent = 0; iEvent < 1000; ++iEvent) {

if (!pythia.next()) continue;

// Loop over particles in event. Find last top copy. Fill its pT.

int iTop = -1;

for (int i = 0; i < pythia.process.size(); ++i)

if (pythia.process[i].id() == 6) iTop = i;

if (iTop>-1) toppt->Fill(pythia.process[iTop].pT());

}

// Statistics on event generation.

pythia.stat();

// Show histogram. Possibility to close it.

toppt->Draw();

std::cout << "\nDouble click on the histogram window to quit.\n";

gPad->WaitPrimitive();

// Save histogram on file and close file.

toppt->Write();

delete outFile;

// Done.

return 0;

}
15 / 21

II. Parton showering

16 / 21

Parton showers
Remember the KLN theorem: Infrared singularities arising in real-emission diagrams
cancel against alike divergences in virtual corrections.1

For the (most) enhanced parts, we can devise a radical interpretation of KLN:

“The rate for # particles remaining the same is (negative) the rate for the # particles
increasing at any scale t – even in the presence of cuts/regularization”.

This is the first building block of a parton shower.

1 This is a popularized account; there are subtleties. Kinoshita’s paper highly recommended. 42 / 86 17 / 21

Sudakov factors
The behavior of partons is similar to that of radioactive elements.

The # particles n can only change n→ n + 1 (due to decay or splitting) at scale t if it
has not already changed at t′ > t.

The probability to not change in a finite interval ∆t is

1−∆tP (t)

where P is the splitting kernel containing the enhanced parts of the real correction.
This is simply statement about unitarity: The rate of no change and the rate of all
possible changes add to unity.

The probability not to change in any very small sub-interval ∆t/n is
(

1− ∆t

n
P (t)

)n
n→∞−−−−→ exp

(
−

∫ ∆t

0
dtP (t)

)

This exponential suppression of not splitting is called the Sudakov factor.

[no splitting] ↔ [fixed # particles]. Thus, the Sudakov introduces virtual corrections.
43 / 86

18 / 21

Exercise

Modify your program to activate showering.
Hints:

• Change all pythia.process[i] into pythia.event[i]

• Now pythia.readString("PartonLevel:all = on")

Question: how many entries has now your event?
Question: how does the top pT distribution change?

19 / 21

Exercise

Modify your program to activate hadronization. Plot the charged multiplicity
distribution of stable particles.
Hints:

• Now also pythia.readString("HadronLevel:all = on")

20 / 21

Thanks!

21 / 21

