SPS Access Safety System

Reliability assessment and Risk Analysis of one safety function

Fabrizio Balda (ST/MA)

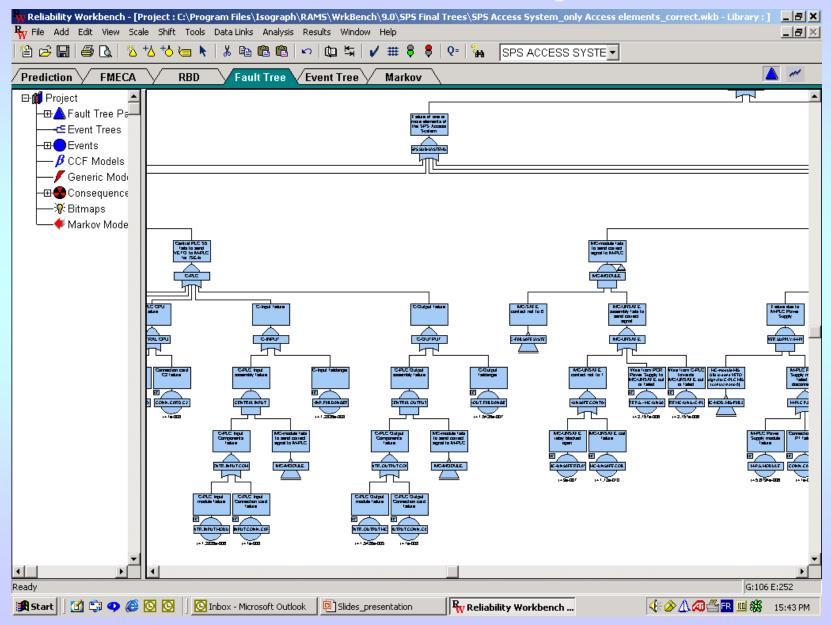
SPS Access System reliability assessment

Safety function:

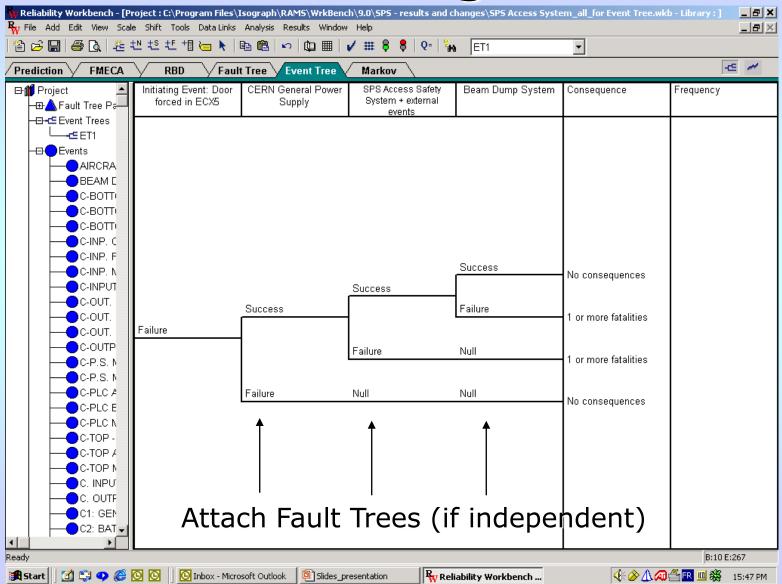
Send inhibition command to SPS machine equipment involved in personnel protection when a door is forced in ECX5

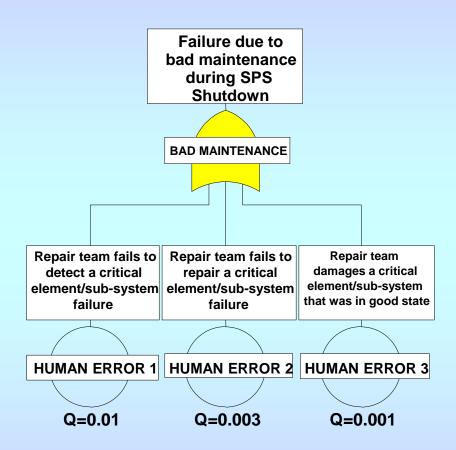
Safety chain: PCR $\sum s$ **VETO IEC 61508** U CCR **CCR** 8 $\sum s \uparrow \overline{} \overline{u}$ VETO •Availability? INB •SIL? Site Site •Risk? $S \uparrow \overline{U}$ ECX5 VETO **EIS-beam**

Data collection


Reliability Workbench - [Project : C:\Program Files\Isograph\RAM5\WrkBench\9.0\Prediction for SPS.wkb - Library : Not Specified [Markov Model : C:\Program Fil]
 🖆 😂 🖫 / 🝜 🖎 🕆 🍬 ங 🛍 🛍 🕫 🕸 🛱 🐖 🗰 🗰 🗰 🗰 🗰 🗰 🗰 👘 🗰 👘 🖓 🙀 🗰 👘 👘 🖓 👘 👘 👘 🖓 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘
Prediction FMECA RBD Fault Tree Event Tree Markov 🛍 🛩 🔑
Image: PREDICTION: FR=663 Mage: Multy FR=0.00561 Relay (Multy FR=0.00511 Context: Preserved.txt: Context: Connect: Connect:
Ready

Fault Tree analysis


- Top-down modeling of failure modes of components
- Boolean logic scheme (OR, AND, XOR, etc.)
- Failure, repair and inspection data
- Dependencies between sub-system


Fault Tree analysis

Event Tree analysis – Fault Tree Linking

Human error

Maintenance and repair

Reliability Workbench - [Project : C:\Program Files\Isograph\RAMS\WrkBench\9.0\SP5 Final Trees\Opzioni\Final Results\SP5 Access System_only faildanger_correct]					
File Add Edit View Scale Shift Tools D			_8×		
	<u>∦ 68 68 ∽ 02 54 √ # 8 8</u>	Q= 🦬 SPS ACCESS SYSTE			
Prediction FMECA RBD	Fault Tree Event Tree Markov	Υ			
✓ Prediction ✓ FMECA ✓ RBD ✓ Project ✓ Fault Tree Pages ✓ Event Trees ✓ CF Models ✓ Generic Models ✓ Generic Models ✓ Consequences ✓ Markov Models ✓ Markov Models ✓ LPLC Supply ✓ Generic Models ✓ Consequences ✓ Markov Models	Edit Local Model Failure Rate : 2.114 Standard Deviation : 0 MTTR : 24 Standard Deviation : 0 Inspection Interval : 0.163 OK 11	e-006 Normal T 37 Cancel 1PL	ilure L-Output failure LC-5 contac IE JT e-5 Q=0.00102 tt ger L-Output faildanger LC-SAFE relay blocked close		
		CONNECTON CARD 12 L-INP. FAILON CHE-LOS BI-LINF r=1e-008 tau=0.167 r=1.28266 C=5.08e-5 C=2.41e-7 C=8.46	e-008 r=1.5426e-007 r=2.6307e-007		
r Conne	ction Failure of wire		▼ ►		
Ready			G:106 E:252		
🎉 Start 🛛 🖸 🧊 🥥 🏈 🔯 🛛 🕅 Reliabilit	🛉 AvSim+ 🖸 Inbox 📴 Microsof 👰	🖲 Grafici v 🛛 🧛 Reliabili	🔗 ⚠ � € 🖓 ≝ 🖪 🔟 🎇 🖂 15:41 PM		

Likelihood of Initiating Event (data from SL/OP)

- A door is forced at SPS almost once per year (*Probable*)
- Considering 15 access points, a door is forced at ECX5 about 0.05 times/year (Occasional)

Consequence (data from TIS/RP)

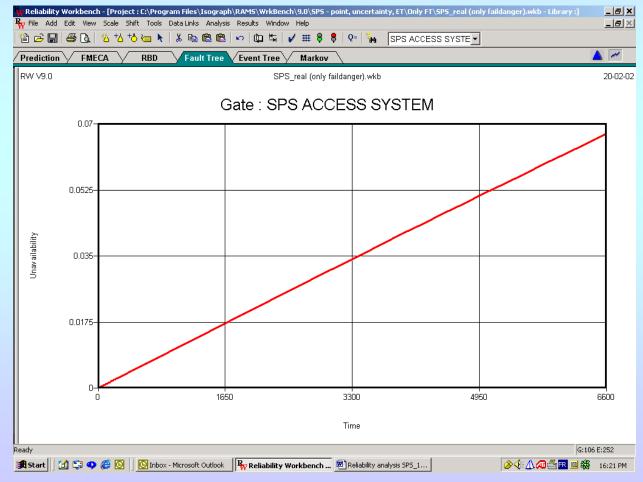
Major (best case):

 dose exceeding lower limits for a Prohibited Radiation Area at CERN

(Loss of $\sim 10^8$ particles per pulse, typical at ECX5)

• temporary sterility to a man (0.15 Gy) at 1 m distance

(Loss of $\sim 10^{10}$ protons, $1.5*10^{-4}$ of a single full beam, typical at SPS ring)


Catastrophic (worst case): death in a few hours or days (\geq 5 Gy)

(Loss of $\sim 2^*10^{12}$ protons for a man at 1 m, or loss of a single pulse (6*10¹³ protons) in a 450 GeV/cycle beam, for a man at 5 m)

Results of today's SPS safety system function

Availability:

93.26 %

Results of today's SPS safety system function

(Low Demand mode of operation) (IEC 61508 classification)

Safety Integrity Level: **SIL 1**

SIL	Average probability of failure to perform its design function on demand (FPPD _{ave})
4	$10^{-5} < Pr < 10^{-4}$
3	$10^{-4} < Pr < 10^{-3}$
2	$10^{-3} < Pr < 10^{-2}$
1	$10^{-2} < Pr < 10^{-1}$
	SIL 4 3 2 1

Results of today's SPS safety system function

Risk Class: II (Tolerable Risk)

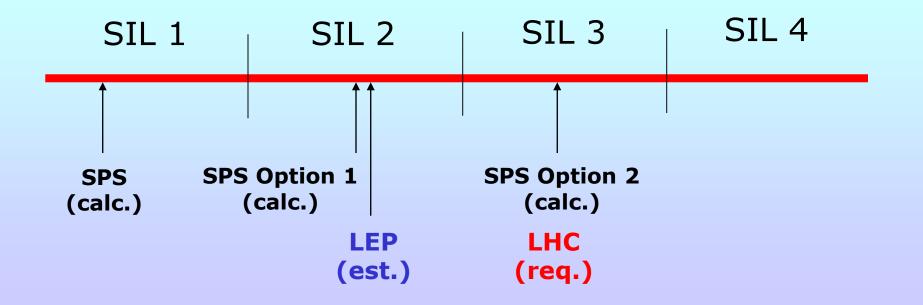
Frequency	Consequence			
	Catastrophic	Major	Severe	Minor
Frequent	I	I	I	п
Probable	I	I	II	III
Occasional	I	II	III	III
Remote		II	III	IV
Improbable	II	III	IV	IV
Negligible / Not Credible	III	IV	IV	IV

Aggregate risk for all SPS access points: Risk Class: **I (Intolerable Risk)**

Confidence, Sensitivity and Importance analysis

- Confidence analysis:
 - Lognormal distribution (where possible)
 - Upper Confidence limit: 99%
- Sensitivity analysis:
 - Components' unavailability should be ~1% of actual Q to reach a SIL 3 without changing the architecture
 - If components' Q is 50% higher, $Q_{tot} > 0.1 \rightarrow out of SIL$ classification
- Importance analysis:
 - Finds out "critical" components
 - Optimizes changes' efficiency with respect to Q

Improvement option 1: full redundancy



Improvement option 2: critical components

Summary

	Availability	SIL	Risk Class
Today's SPS safety function	93.26 %	SIL 1	II (Tolerable)
Option 1 (full redundancy)	99.52 %	SIL 2	II (Tolerable)
Option 2 (critical components)	99.93 %	SIL 3	III (Acceptable)

Conclusions

- Satisfactory quantitative results
- Good software performance
- Not satisfactory reliability parameters for the analyzed function even if the system is failsafe (according to IEC 61508 and ALARP)
- Importance analysis is crucial to optimize changes
- Do it **systematically** for each safety function
- Do it **systematically** for each LHC (sub)-system!
- ...feedback???