The abort gap: longitudinal time scales and possible diagnostics

E.Shaposhnikova (SL/HRF) MPWG, 23.05.2002

- Time scales for the particle motion with
 - RF off
 - RF on
- Diagnostic from 400 MHz component
- Plans for MDs in the SPS

RF off

• The azimuthal position θ of a particle with a momentum deviation $\delta p/p$ changes with time as

$$\theta(t) = \theta_0 + \omega_0 \eta \frac{\delta p}{p} t,$$

 $f_0 = \omega_0/(2\pi)$ is the revolution frequency, $\eta = 1/\gamma_t^2 - 1/\gamma^2$ is the slip factor.

• The bunch length increases as

$$\tau(t) = \tau_0 \sqrt{1 + t^2 / t_d^2},$$

with the debunching time $(\tau(t_d) = \tau_0 \sqrt{2})$

$$t_d = \tau_0 / (2\eta \frac{\delta p}{p}).$$

• For $t \gg t_d$

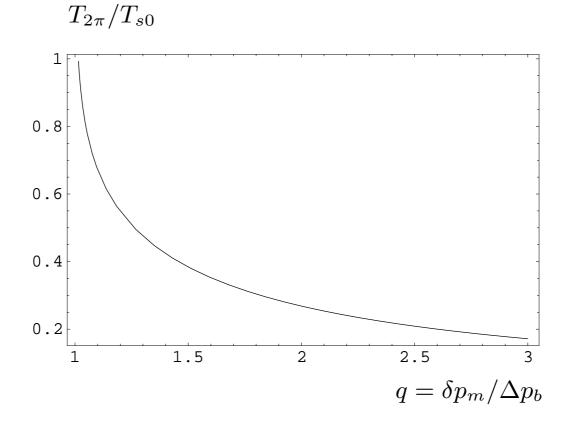
$$\tau(t) = 2\eta \frac{\delta p}{p}t.$$

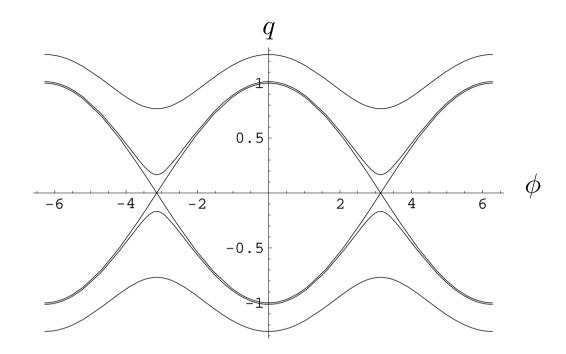
Time scales with RF off

E_s	η	ε	$ au_0$	$\delta p/p$	t_d	t_{bb}	t_{gap}
$[\mathrm{TeV}]$		[eVs]	[ns]		[ms]	[ms]	$[\mathbf{S}]$
0.45	3.42×10^{-4}	1.0	1.76	8.62×10^{-4}	3.0	42.4	5.09
		1.0	2.48	5.88×10^{-4}	6.17	62.2	7.46
7.0	3.47×10^{-4}	2.5	1.08	2.16×10^{-4}	7.21	166.8	20.0

 t_{bb} - time needed to fill $\Delta t_{bb} = 25$ ns,

 t_{gap} - time needed to fill $\Delta t_{gap} = 3 \ \mu s$.


Intensity effects (inductive wall impedance) are not important.


RF on

The time $T_{2\pi}$ it takes for a particle outside the separatrix to travel one RF period (T_{rf}) is

$$\frac{T_{2\pi}(q)}{T_{s0}} = \frac{K(1/q)}{\pi q},$$

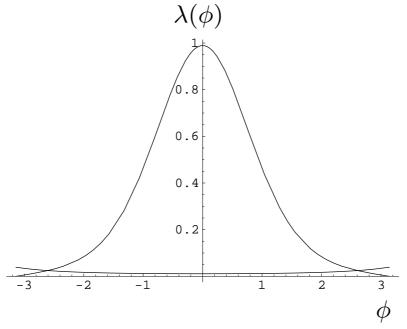
 T_{s0} is the period of small synchrotron oscillations, K(x) is a complete elliptic integral of the first kind, $q = \delta p_m / \Delta p_b, q > 1.$

Phase space trajectories of particles with different q (maximum momentum deviation, normalised to the bucket height):

q = 1 (separatrix), $q_1 = 1.014 \ (T_{2\pi} = T_{s0}),$ $q_2 = 1.261 \ (T_{2\pi} = T_{s0}/2).$

Time scales with RF on

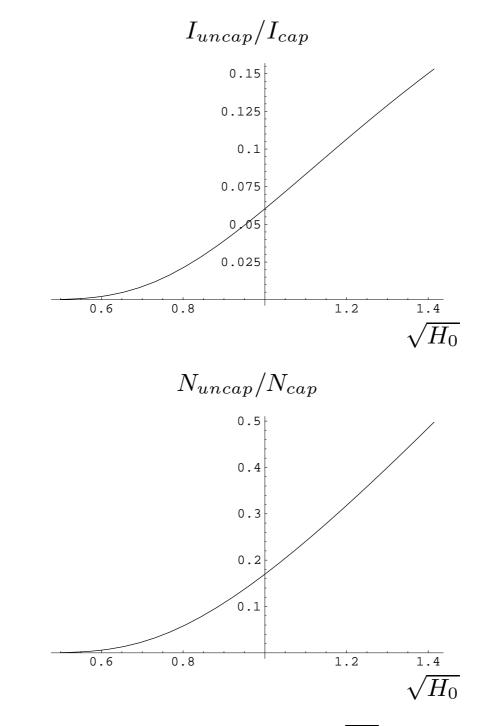
E_s	f_{rf}	V	T_{s0}	$t_{bb}(q_1)$	$t_{gap}(q_1)$	$t_{gap}(q_m)$	$\Delta p_b/p$	q_p
[TeV]	MHz	[MV]	[ms]	[ms]	$[\mathbf{S}]$	$[\mathbf{s}]$	$\times 10^{-4}$	
0.45	400	8.0	15.1	75.35	9.04	1.55	9.68	0.89
0.45	200	3.0	34.9	87.2	10.46	1.81	8.38	0.70
7.0	400	16.0	41.9	209.5	25.14	4.33	3.53	0.61


•
$$q_1 = 1.014 \ (T_{2\pi} = T_{s0}),$$

- the cut of momentum deviation by the collimation system (B. Jeanneret):
 - at injection at $\delta p/p = 3 \times 10^{-3}$,
 - at top energy $\delta p/p = 1 \times 10^{-3} \longrightarrow$ in both cases $q \sim q_m = 3$,
- q_p is the bucket filling factor for the bunch with nominal parameters.

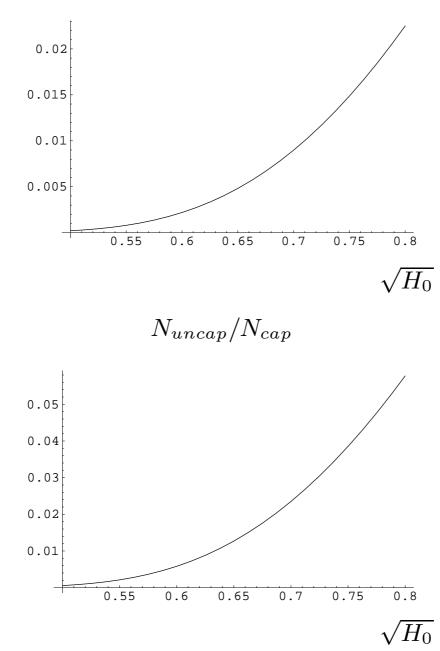
Diagnostic from 400 MHz component

Example: The distribution function $F(H) = F_0 \exp(-H/H_0)$, where $H = \dot{\phi}^2/(2\omega_s^2) + (1 - \cos\phi)$. For short bunches $\sqrt{H_0} \simeq \sigma_{\phi}$.


Line density of captured and uncaptured particles $(\sqrt{H_0} = \pi/4)$

Beam spectrum

- captured particles: $n \times 40$ MHz
- uncaptured particles: $n \times 400$ MHz (after some time)


Beam component at 400 $\rm MHz$

 $H_{max} = 3 \ (H_{sep} = 2) \to q_{max} = \sqrt{1.5} \simeq 1.22$

Beam component at 400 $\rm MHz$

 I_{uncap}/I_{cap}

 $H_{max} = 18 \ (H_{sep} = 2) \rightarrow q_{max} = 3$

Possible MDs in the SPS

Two or more LHC batches in the coast

- RHIC approach (40 MHz component)
- measurements of 400 MHz component only in the gap (gating)
- excitation in the gap at different frequency (scanning in momentum)
- beam echo?

All methods need careful calibration