

1

LHC Beam Loss Monitor System

B. Dehning, G. Ferioli, W. Friesenbichler, E. Gschwendtner

detect shower particles outside cryostat induced by beam particle losses

relation between beam particles and quenchlevels

» J.B.Jeanneret et al., LHC Project Report 44, CERN (1996)

•correspondance between particle fluence outside cryostat and quenchlevels

» E. Gschwendtner et al., EPAC 2002, Paris

» A. Arauzo-Garcia et al., CERN-SL-2001-027-BI, CERN (2001)

- → define quench levels
- → get proton loss distribution along the magnets misalignment, β_{max}
- → perform proton loss shower simulation in the magnets
 - to get expected detector signals, positions and dynamic range
 - Aim:
 - distinguish between 2 beams
 - find out where loss has happened
- → develop monitors
- → Some words on reliability

Quench levels (I)

Quench levels (II)-energy dependence 14 June, 2002

Primary and secondary halo of the beam is absorbed by the collimation system.

Tertiary halo will be lost at aperture limits in the ring.

•

14 June, 2002 Beam loss distribution along a part cell of the LHC for 450GeV.

Geant 3.21

Dispersion Suppressor

→ Detailed simulation of magnet geometry, Version 6.3 MB,MQ,MQM, MQML,MQMC,MQTL, MCBCB,MSCBA,MCDO,MCS,BPOM,

→ magnetic field maps for Quadrupoles, Dipoles (Roxie)

- incident angle of 0.25mrad (other angles vary only marginally)
- losses in horizontal (QF) and vertical plane (QD) of beam screen
- 100 events with same impact parameters

Title:

mqmlcutview.eps Creator: fig2dev Version 3.2 Patchlevel 1 Preview : This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Title:			
r0020)5epac.eps		
Creat	tor:		
fia 2d [,]	ev Version 3.2 Patchlevel 1		
Previ	ew :		
This F	EPS picture was not saved		
with	a preview included in it		
Comr	ment [.]		
This I	EPS picture will print to a		
Posts	Script printer, but not to		
	types of printers		
[, pee et printelet		

14 June, 2002

- Signals very high when losses between magnets (bellows)
- Lower when in magnet:
 - → Point-like
 - → Distributed
- 3 monitors/beam around quadrupole
 - → For location of losses: combine several monitor signals

	min: ch/p/cm ²	max: ch/p/cm ²
450 GeV	5 · 10-4	3 · 10 ⁻³
7 TeV	4 · 10 ⁻³	6 · 10 ⁻²

Baseline detector:

Ionisation chamber

N₂ filled cylinder, 80 cm², 19cm length, bias voltage of 800V

Chamber current varies between 60pA and 150 μ A

Readout electronics

Charged balanced current-to-frequency converter (CFC)

performance

frequency evaluation circuit

• Tests in SPS dump

- Monitor design criteria:
 - → Electronics: same concept for BLMC, BLMS, BLMA.
 - I.e. same dynamic range: 1 turn, although for BLMA only ms range demanded.
 - Reduces complexity and increases reliability
 - → From 8-bit counter on: everything is twice
- In specifications: for each magnet 2 monitors
 - → We have 6 monitors
 - Additional reliability
 - Distinguish loss locations

• Loss distribution & shower simulations:

• More studies for detector locations and geometry.

• Monitors:

- Front end electronics finished, circuits will be built and testet soon
- Signal transmission: twisted pair or fibre optics, will be decided in a few weeks.
- Dump controller: starting of design in a few weeks. Timescale: 1.5-2 years
- High intensity behaviour of detectors will be tested this summer at PS
- **Reliability studies:**
 - PhD student this summer