The LHC Beam Dump System

Aperture limitations in the MSD septum magnet

Schematic Layout

MSD for both rings – aligned w.r.t. circulating beams

Septum protected by TCDS

MSD Alignment

Constraints

Circulating beam:

- Vacuum chamber bakeable to 150 °C
- Should provide aperture of n₁ = 7.0

Normally extracted beam:

- Should accept all beams with sufficient aperture
- 450 GeV and 7 TeV (≥6.0 σ and ≥8.0 σ)
- 15 <u>or</u> 14 MKD modules firing
- MKD overshoot of maximum 10% (incl. tolerances)

Asynchronous MKD firing :

+ TCDS shadows MSD vacuum chamber up to 2 σ

Circulating beam : Derive maximum aperture with present vac. chamber...

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

MKD Flat-top Current Variation

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

"Nominal" Beams in Gap (horizontal)

Why do the constraints need to be changed?

Circulating beam:

Not possible to respect aperture of $n_1=7.0$ for 4mm CO_x

Extracted beam:

Aperture problems for extracted beam if 4.0mm Cox

(at 7 TeV limitation is due to available kick strength)

	450 GeV	7 TeV
15/15 MKD	4.0 σ	2.1 σ
14/15 MKD	0.6 σ	~0 σ

Additional 'new' factors

'Dynamic orbit' (RA):

In the event of specific machine faults, beam position may move substantially in point 6 <u>before</u> the dump can be fired. Worst case values given (assume dump at 3 sigma intercept)

	450 GeV	7 TeV	7 TeV squeezed
Nominal ($\beta^* = 0.5$ m)	8.7 mm	11 mm	2 mm
Initial ($\beta^* = 1.0$ m)	8.7 mm	11 mm	4 mm

Asynchronous 'leftovers':

In the event of a prefire, beam below ~7-8 σ makes 1 turn and arrives back with a large offset — must still be extracted

What can be done...

Investigated possible solutions :

- Assume various faults are decoupled
- Increase aperture of vacuum chamber limited effect
 - second-to-last resort (last resort is new MSD...)
- Reduce MKD overshoot
 - still fighting to keep total below 10% already modifications to generator for this - cannot go much further (also adversely affects rise time and dilution...)
- Orbit feedback to reduce CO_x <u>very important effect</u>

• From MPWG & JW, assume ±1.0mm at extraction elements...

- For 14/15 case, allow part of beam to strike TCDS
- For asynchronous case, make TCDS 2-sided...?

Methodology

Circulating beam aperture :

• Place TCDS at 14.0 ±1.0 mm

MPWG meeting 13-12-2002

Methodology

- Position MSDC in shadow of TCDS (2σ) :
- MSDC exit at -20.2 mm

MSDC chamber inside position vs n1 for various COx (mm)

Assume orbit well controlled for asynchronous dump (i.e. faults decoupled)

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

Methodology

Optimise clearances for extracted beam :

- Assume normalised emittance ϵ = 3.75 x 1.17 x 1.21 μm
- Assume nominal orbit ±1.0 mm
- Allow 14/15 MKD case to approach TCDS
- Fix same MKD kick from 450 GeV to 7 TeV

Aperture for extracted beam if 1.0 mm CO_x

	450 GeV	7 TeV
15/15 MKD	6.6 σ	27 σ
14/15 MKD	3.7 σ	14 σ

Admittance (N σ) at 450 GeV as function of CO_x

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

Admittance (N σ) at 7 TeV as function of CO_x

Protons on the TCDS & MSDC – MKE waveform effect

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

Acceptance vs ϵ at 450 GeV

MPWG meeting 13-12-2002

LHC Beam Dump System (B. Goddard & M. Gyr, SL/BT)

Conclusions

- The MSD do not have enough aperture to extract the LHC beam under the old set of constraints
- All aperture requirements can be met with the present optics, MKD kickers, MSD magnets and vacuum chambers, if :
 - The horizontal closed orbit is controlled to about ±1.0mm in point 6 using feedback (which is not connected to machine protection system)
 - For circulating beam aperture at TCDS, this means accepting ± 2 mm and n₁ = 6.5
 - MKD and LHC machine fault cases are not correlated
 - **The total MKD overshoot (including all tolerances) is within 10%**
 - The beam approaches the TCDS for 14/15 MKD firing
 - Fast beam position changes due to machine faults are detected by local BPMs – which trigger beam dump when the position exceeds ~4mm
 - Fast emittance growth (at 450GeV) is detected at 2 3 x nominal, and the beam dumped
 - The few bunches making a full turn after an asynchronous dump are captured by a second TCDS jaw (to be verified)