- Comments to minutes
- General Information
- Update on the beam dump aperture (B. Goddard, M. Gyr, R.Schmidt)
- Update on D1 failures (M.Zerlauth, F.Bordry)
- AOB
 - LCC discussion on access and beam dump ---> to be discussed in MPWG
 - Chamonix workshop
- Next meeting(s)
 - Meeting on 17/1/2003

What happens with the particles in case of spontaneous kicker firing...?

- Injection perfect closed orbit in IR6
- Injection with closed orbit errors
- 7 TeV with TCDQ at injection position
- 7 TeV with TCDQ at 10 σ with / without closed orbit errors

Schematic drawing of extraction

R.Schmidt, MPWG 13/12/02 p.3

Injection, no closed orbit errors in IR 6

- Nominal position of TCDQ collimator is $10 \sigma = \pm 20.65 \text{ mm}$
- Assume an asynchronous beam dump particles can be deflected by an angle between 0 mrad and the nominal kick
- A particle that receives a kick of 0.0447 mrad just makes it through the collimator
- The particle oscillates around the closed orbit with a maximum betatron amplitude of 11.8 mm
-very little that one can do about it

Asynchronous beam dump - bunches that make a turn

Injection, no closed orbit errors in IR 6

- Assume that the bunch makes it through the ring, and is not caught by the collimators
- Assume a betatron tune of 64.31
- The bunch comes back to the kicker, and receives a second kick
- The position of the bunch at the kicker with respect to the nominal extraction position is 15.8 mm, and its angle is -0.0048 mrad (with the previous parameters)
- The bunch will be extracted to a position of 106 mm (far outside the aperture of the septum magnet)
- Assume that the collimators are in a position of, say, 6-7 σ
- Bunches with large amplitudes will be captures, but bunches with a smaller amplitude will get through an arrive at the septa magnets with a position between nominal, and about 80 mm (to be calculated in detail)

Schematic drawing of extraction - closed orbit

Asynchronous beam dump with orbit errors

Injection, closed orbit errors in IR 6

- Nominal position of TCDQ collimator is $10 \sigma = \pm 20.65 \text{ mm}$
- Assume that the closed orbit at the TCDQ at -8.3 mm (the particles with an amplitude of 6 σ touch the collimator)
- A center of a bunch that is deflected 0.0685 mrad just makes it through the collimator
- The bunch oscillates around the closed orbit with a maximum betatron amplitude of 18.2 mm

Asynchronous beam dump at top energy

Without closed orbit errors in IR 6

- Assume position of TCDQ collimator is left at 10 $\sigma_{\text{injection}} = \pm 20.65 \text{ mm}$
- Assume an asynchronous beam dump
- A center of a bunch that receives a kick of 0.0447 mrad just makes it through the collimator
- The bunch oscillates around the closed orbit with a maximum betatron amplitude of 11.8 mm
- If the collimators in IR 3 are left at injection settings, bunches with large amplitude oscillations will come back, and then kicked into the septa magnets
 without protection this could damage equipment
- If the collimators in IR3 are close to the beam.... might still be a problem for a bunch that just makes it through (to be calculated)

Asynchronous beam dump at top energy

With closed orbit errors in IR 6

- Assume position of TCDQ collimator is left at 10 $\sigma_{\text{injection}} = \pm 20.65 \text{ mm}$
- Assume an asynchronous beam dump
- A center of a bunch that receives a kick of 0.0877 mrad just makes it through the collimator
- The bunch oscillates around the closed orbit with a maximum betatron amplitude of 23 mm

...cannot be tolerated

- Assume the position of TCDQ collimator is left at 10 $\sigma_{\text{injection}} = \pm 5.2 \text{ mm}$
- The bunch oscillates around the closed orbit with a maximum betatron amplitude of 4.4 mm
- ...can be tolerated

Conclusions - for discussion

- The TCDS protecting the outside of the MSD is probably required
- The TCDQ should move towards during the energy ramp
 - Therefore the collimators in IR7 must also move in
 - This will protect the machine
 - This will reduce the number of bunches that hit the collimators
 - The position of the collimators need to be established

LCC - discussion on access and beam dump Conclusion for machine protection

- There is no safe way to stop the beam when the Beam Dump Kicker would not fire
- If ever such an accident happens, it is most likely after a quench, or another failure
- Whatever alternative to stop the beam damage would be done

• For today's discussion on EIS

- The beam dump should be the first EIS
- The D1 magnet could be the third EIS (that makes sure that no beam can circulate NOT to stop the beam)
- For the INB authorities, a massive absorber could be the second EIS
- For machine protection: To prevent damage to machine equipment massive absorbers close to the beam might prevent more severe equipment damage (sacrificial absorbers)

• WORK IS ONGOING ADRESSING THE ISSUE

20'
202
202
20
20'
20
20'
_
20'
-
20
20'
20

Ses	sion 6, Controls for safe operation of the LHC		
Chai	r B Frammery		
Scie	ntific secretary R. Lauckner		
6.1	Do we need collimators in the transfer lines? (failure scenarios, how many, at what phase?, H+V?, tolerances, movable or fixed?,)	H.Burkhardt	20'
6.2	Safe injection into the LHC How to avoid catastrophic beam losses at injection. Probe beam – associated procedures, monitoring, interlocks. Abort gap conservation during injection	E.Carlier	15'
6.3	Interlock channels and their timescales Brief review, 2 timescales, 2 systems, systems connected Use case 2005 fast power abort Use case Beam Abort	B.Puccio	15'
6.4	Beam Instrumentation for Machine Protection Beam monitors in the protection logics, Setting of thresholds – associated integrity, variation with energy BLMs, BPMs. Limitations due to cross talk between beams	B.Dehning	20'
6.5	How can we guarantee quench protection and beam availability? Availability of power-permit, reliability of the quench protection system. Protect magnets and protect beam	F.Rodriguez- Mateos	20'
6.6	What do we see in the Control Room? Understanding what happened and what to do Permanent monitoring: emittance, temperatures, avoiding quenches. Stopping operator errors.	R.Lauckner	20'
6.7	Reliable TimingHow can timing failures lead to reduced efficiency or damage?During filling, after filling. Should users take precautions?Transmitting machine status – for who?Diagnosing timing faults.	M.Jonker	15'