

BEAM LOSS MONITORS DEPENDABILITY

STATE OF ART

14 Feb 2003

BLM Dependability. G.Guaglio 1/18

System fault events

- BLM are designed to prevent the Magnet
 Disruption (MaDi) due to an high loss (~30 downtime days).
- BLM should avoid false dumps (FaDu) (~6 downtime hours).
- Use of Safety Integrity Level (SIL), IEC 61508.

Sil Approach 1/4

Event likelihood (both)

Category	Description	Indicative frequency level (per year)	
Frequent	Events which are very likely to occur		
Probable	Events that are likely to occur	10 ⁻¹ - 1	
Occasional	Events which are possible and expected to occur	10 ⁻² - 10 ⁻¹	
Remote	Events which are possible but not expected to occur	$10^{-3} - 10^{-2}$	
Improbable	Events which are unlikely to occur	10 ⁻⁴ - 10 ⁻³	
Negligible / Not credible	Events which are extremely unlikely to occur	< 10 ⁻⁴	

MaDi: 100 destructive losses/year

14 Feb 2003

Sil Approach 2/4

Consequences

Category	Injury to personnel		gory Injury to p	njury to personnel Damage to equ		ry to personnel Damage to equipment		equipment	
	Criteria	N. fatalities (indicative)	CHF Loss	Downtime					
Catastrophic	Events capable of resulting in one or more fatalities	≥1	> 5*107	> 6 months					
Major	Events capable of resulting in very serious injuries	0.1 (or 1 over 10 accidents)	10 ⁶ - 5*10 ⁷	20 days to 6 months	<u>)</u> <u>M</u>				
Severe	Events which may lead to serious injuries	0.01 (or 1 over 100 accidents)	10 ⁵ - 10 ⁶	3 to 20 days					
Minor	Events which may lead to minor injuries	0.001 (or 1 over 1000 accidents)	0 - 10 ⁵	< 3 days) <u>Fa</u>				

Sil Approach 3/4

<u>SILs</u>

Event	MaDi Consequence FaDu			
Likelihood	Catastrophic	Major	Severe	Minor
Frequent	SIL 4	SIL 3	SIL 3	SIL 2
Probable	SIL 3	SIL 3	SIL 3	SIL 2
Occasional	SIL 3	SIL 3	SIL 2	SIL 1
Remote	SIL 3	SIL 2	SIL 2	SIL 1
Improbable	SIL 3	SIL 2	SIL 1	SIL 1
Negligible / Not Credible	SIL 2	SIL 1	SIL 1	SIL 1

Sil Approach 4/4

Failure probability

Low demand mode of Operation (<1 year)

High demand / continuous mode of operation

SIL	Average probability of failure to perform its design function on demand (FPPD _{ave})
4	$10^{-5} < Pr < 10^{-4}$
3	$10^{-4} < Pr < 10^{-3}$
2	$10^{-3} < Pr < 10^{-2}$
1	$10^{-2} < \Pr < 10^{-1}$
	NT 2011년 1월 1997년 1월
SIL	Probability of a dangerous failure per hour
SIL 4	Probability of a dangerous failure per hour $10^{-9} < Pr < 10^{-8}$
SIL 4 3	Probability of a dangerous failure per hour $10^{-9} < Pr < 10^{-8}$ $10^{-8} < Pr < 10^{-7}$
SIL 4 3 2	Probability of a dangerous failure per hour $10^{-9} < Pr < 10^{-8}$ $10^{-8} < Pr < 10^{-7}$ $10^{-7} < Pr < 10^{-6}$
SIL 4 3 2 1	Probability of a dangerous failure per hour $10^{-9} < Pr < 10^{-8}$ $10^{-8} < Pr < 10^{-7}$ $10^{-7} < Pr < 10^{-6}$ $10^{-6} < Pr < 10^{-5}$

~180 BLMs for collimators.
~3000 BLMs for magnets.
Scan every 40 μs.
Check every 1 ms.
Signal with 8 order of magnitude.

Threshold Levels

14 Feb 2003

BLM Dependability. G.Guaglio 8/18

Our Selection

- Ionization chambers: reliable (no fails with 200 chamber during 20 years in SPS), wide range.
- Current to Frequent Converter (CFC), from 10⁻² to
 - 5 10⁶ Hz.
- Two optical lines: bandwidth, reliability.
- Use FPGAs: reliability, flexibility, cheap.

Our Layout

ELEMENT	λ [1/h]	inspection [h]
Ionization Chamber + 400m cable	2.58E-08	20
Amplifier (CFC)	2.78E-08	20
Photodiode	3.18E-08	2.78E-07
Switch (CFC)	8.70E-08	20
2 Optical connectors	2.00E-07	2.78E-07
Optical fiber	2.00E-07	2.78E-07
FPGA RX	6.99E-07	2.78E-07
UPS ??	1.00E-06	2.78E-07
FPGA TX	2.02E-06	2.78E-07
Laser	8.46E-06	2.78E-07

Front-end Electronic

Back-end Electronic

14 Feb 2003

MaDi 1/2

14 Feb 2003

BLM Dependability. G.Guaglio 13/18

MaDi 2/2

FaDu

Risk Matrix 1/2

? (Raw) Foreseen failure rate:

MaDi: 1.7 10-6/h * 4000 h/y * 100 = 0.7/y
Probable
Dangerous losses

Beam hours: 200 d*20 h/d

Frequent

Dangerous losses per years

•FaDu: 2.7 10-6/h * 4000 h/y * 3200= 35/y

Number of channels

Risk Matrix 2/2

Frequency	MaDi Consequence			FaDu
	Catastrophic	Major	Severe	Minor
Frequent	I	I	I	п
Probable	I	I		III
Occasional	I	II	III	
Remote	II	II	H th	e boraer
Improbable	II	ard he	/ong un	IV
Negligible / Not Credible	туе		IV	IV

- I. Intolerable.
- II. Tolerable if risk reduction is impracticable or if costs are disproportionate.
- III. Tolerable if risk reduction cost exceeds improvement.
- IV. Acceptable.

- 1. Improve the Current to Frequency Converter electronic quality.
- 2. Procedure to test the Ionization Chamber as frequent as possible.
- 3. Collect data about current unavailability of Beam Energy System and Beam Interlock Controller.
- 4. Estimation of the threshold levels failure rate for FaDu.
- 5. Multiple detections? If yes: coincidence (es: 2001000) in the Beam Interlock Controller?