Beam position interlocks

J. Wenninger

From discussions with B. Goddard, J. Uythoven, R. Jones, R. Schmidt and others

- Beam dump aperture.
- Orbit @ TCDQ.
- Fast failures.

General remarks

From Chamonix (and even before...) \rightarrow seems clear that we need to interlock the beam position in the dump area.

But we should remember that for operation :

• Orbit/injection oscillations at injection may be quite bad before adjustments :

We should not have to mask the interlocks too often in order to get the first pilot beam in !!!

• Injection oscillations of 2σ amplitude (some 50-100 turns) and tune measurements should not lead to a dump.

Beam dump aperture interlock

Summary of the discussions on position interlocks

Required interlock level : 4 mm @ Q4 in IR6

Layout & architecture (details to be evaluated) :

Redundant system of BPMs on the IP side of the Q4s

→ 4 new BPMs / beam.

Some form of redundancy on the electronics (crates).
Interlock signal → local BICs.
Bunch by bunch system seen as simpler :

auto-trigger – no timing.

Sketch of the BPM layout in IR6 / one beam.

Thresholds

Thresholds & response : based on D1 failure

• D1 failure \rightarrow ~60 µm/turn @ TCDQ (V. Kain).

- Response time : 1 turn (detection) + 2 turns (delay, synchro...).
 - \bullet 200 μm movement between detection and dump.
 - 200 μm single bunch (pilot) resolution.
 - interlock threshold of 3.6 mm \rightarrow 4 mm effective threshold.

Other points...

- Position offsets must be introduced...
- False trigger rate has to be evaluated

Overall impression : feasible !

Orbit @ TCDQ

Orbit tolerance @ TCDQ / Injection

- Beam size @ the TCDQ : σ = 2.2 mm.
- Dump aperture interlock \rightarrow dump @ ~ 2 σ .
- With a CO shift of 2σ + asynchronous dump : some bunches reach amplitudes of ~ TCDQ aperture + 2σ
 TCDQ aperture should be at least 2σ smaller than arc aperture to avoid requiring a tighter position intlk.
- For a 2σ orbit shift :
 - TCDQ may become secondary (or even primary) collimator ! → dump via BLM rates before reaching BPM interlock level ?

Orbit @ TCDQ / ramp & squeeze

At end of the ramp – before squeeze :

 Dump aperture interlock → dump @ ~ 8 σ (4 mm) Since optics is not changed (except for errors)
 Might be good to reduce the TCDQ aperture to ~ 25σ at end of the ramp.

After squeeze (see Rudiger's presentations) :

If the interlock level is kept constant at 4 mm / 8 σ :
 → The triplets must be protected by absorbers.
 Without triplet protection :

→ Tighter interlock threshold : 2 mm ? Less ?

Fast failures I

CO movements from fast failures (LHC V6.4) :

- D1 with squeezed beams : ~ 600 μ m / 10 turns @ TCDQ
- D2 quench/ MB quench : ~ factor 2 smaller slope after 5-6 ms

BPMs can start measuring /integrating at an early time !!

Fast failure thresholds

D1 failure – for squeezed beams (~ steady state) :

Threshold :

- → ~ 900-1200 µm in 15-20 turns @ TCDQ !
- \rightarrow 500 μ m in 15-20 turns with safety factor for optics changes..

Failure of D1+solenoid, MB quench...:

Threshold :

- →~ 900-1200 µm in 60-80 turns @ TCDQ !
- \rightarrow 500 µm in 60-80 turns with safety factor for optics changes...

But the later can happen any time in the cycle !!

Interlock summary

Beam dump aperture :

• Position interlock at 4 mm ~ OK, fast failures are covered.

- Protection by the TCDQ :
 - <u>At injection</u>: compatible with the same interlock settings if TCDQ aperture is at least ~2σ tighter than machine aperture.
 Compromise between TCDQ aperture and interlock threshold.
 - <u>Squeezed beams</u>: triplet protection and/or tighter thresholds (by a factor 2 or so).

• Fast failures :

- Interlock threshold: 0.5-1 mm / 15-20 turns ($\beta \sim 500-600$ m).
- Feasible ? Within the same interlock system ?
- SPS measurements over 26 \rightarrow 450 GeV cycle as test-bed ?