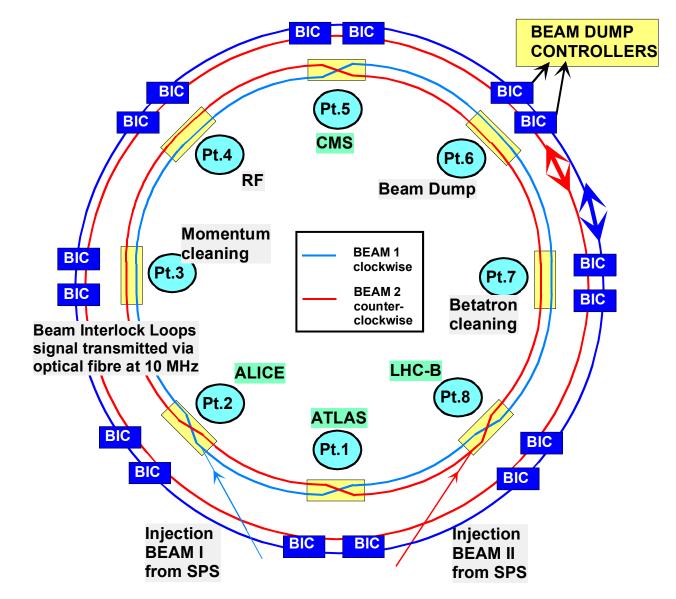
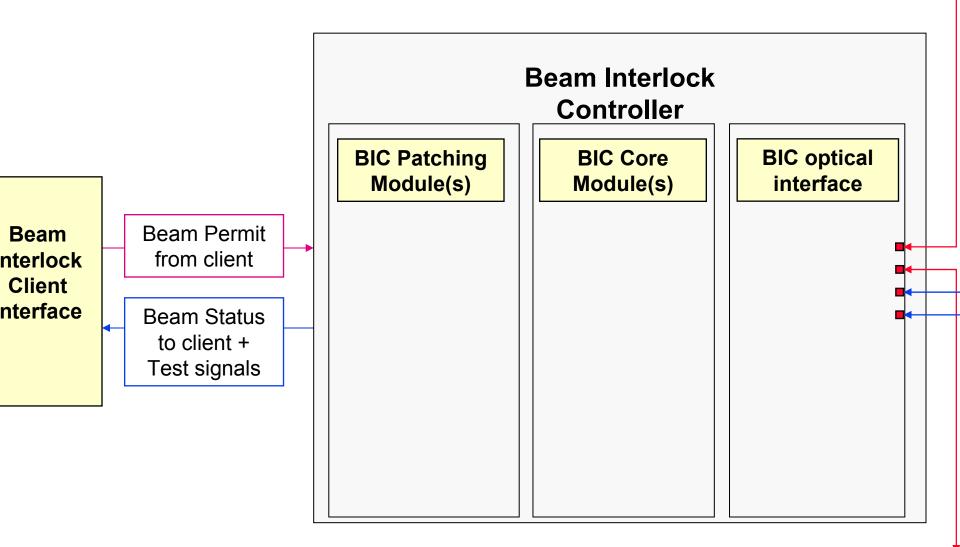
MPWG meeting 3-10-2003

Beam Interlock System


- experience with the Beam Interlock Controller in SPS tests (B. Puccio)
- safety beam and masking of input signals (R. Schmidt)
- general strategy and interfaces to users (R. Schmidt)

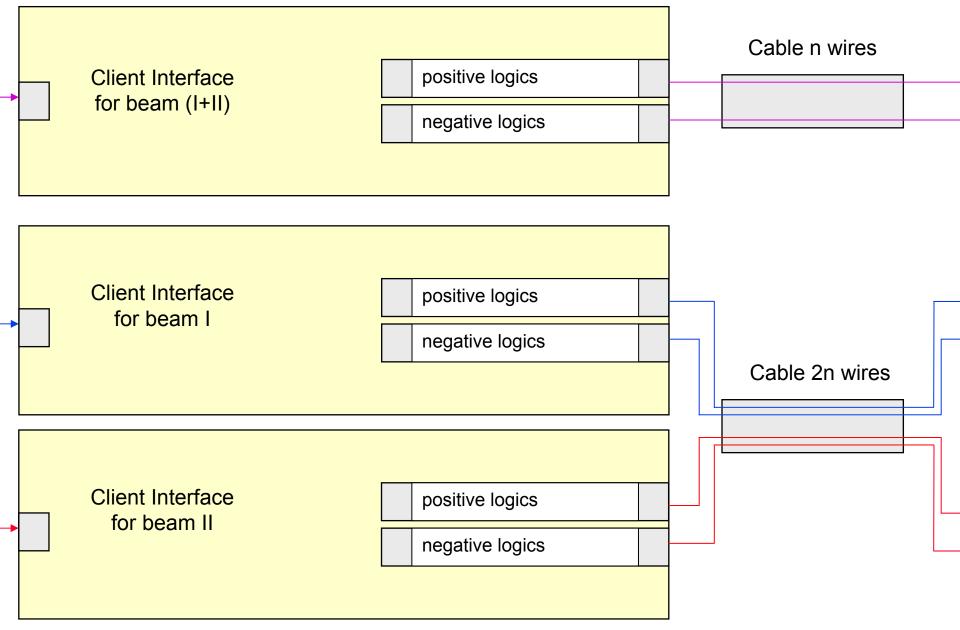
Fast detection of magnet failures (M. Zerlauth)


AOB

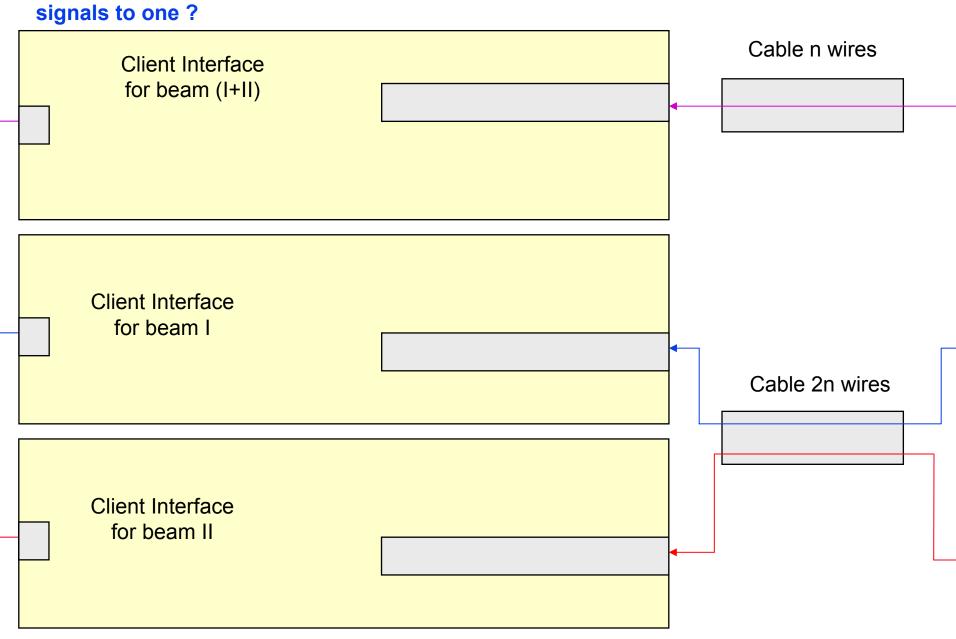
- News from calculations on heating of collimators in transfer line
- Collimator and material test in SPS extraction line next year
- BCT for beam abort gap monitoring
- Next MPWG: discuss about a review on beam interlocks and associated ystems?

Beam Interlock Control System

Beam Interlock Controller and client interface



Some general requirements for Beam Interlock System


- Collect beam permit signals from clients, and provide one general beam permit signal for each beam
- Distribute beam permit signals to clients
- Very high reliability (SIL3)
 - Redundancy (two optical fibres for one beam, in total four in the LHC, optional with two fibres using bi-directional tranceivers)
- Modular: easy to use for SPS and LHC
- Monitoring with time stamping
- Some inputs act on one beam (beam 1 or 2), some inputs act on both beams - beam (1+2)
- Some inputs must be maskable
 - inputs maskable might depend on beam intensity (new requirement)
 - inputs maskable might not depend on beam intensity
 - how many inputs should be maskable?
- Allow for tests when users are not ready
 - test mode should never result in accidental beam permit

MPWG 2/10/2003 p.4

Client interface boxes – signals from clients – one cable per client?

Client interface boxes – signals to clients – how to get from two

General questions for MPWG members

- Who are the clients? For beam I and beam II, or for beam (I+II)? Did we forget anything? Are there possibly future signals?
 - Do we need signals from the injection kicker as input? (maybe not....)
- What signals should be maskable?
- What clients need information on beam permit? At what SIL? One beam both beams – any beam?
- Safety beam flag or beam intensity? Where to make the flag? Is redundancy required for such flag? We need such flag for each beams.
- Strategy using safety beam flag:
 - for all maskable channels the same ?
 - for each maskable channel to be selected ?
- Interface to injection and extraction (to be discussed with AB-BT Etienne)
- Operational procedure with beam dump permit? Interfaces to beam dump system to be defined in detail.
 - beam dump not ready no beam permit
 - beam dump ready no beam permit leads to beam abort....

Questions related to beam client interface

- How many types of client interface modules ? Is one type sufficient ?
- Signals to clients: we suggest one signal? Do all such boxes provide beam status information?
- Have one module for each beam? And one module for beam (I+II)?
- Cables: one cable for each beam? one common cable?

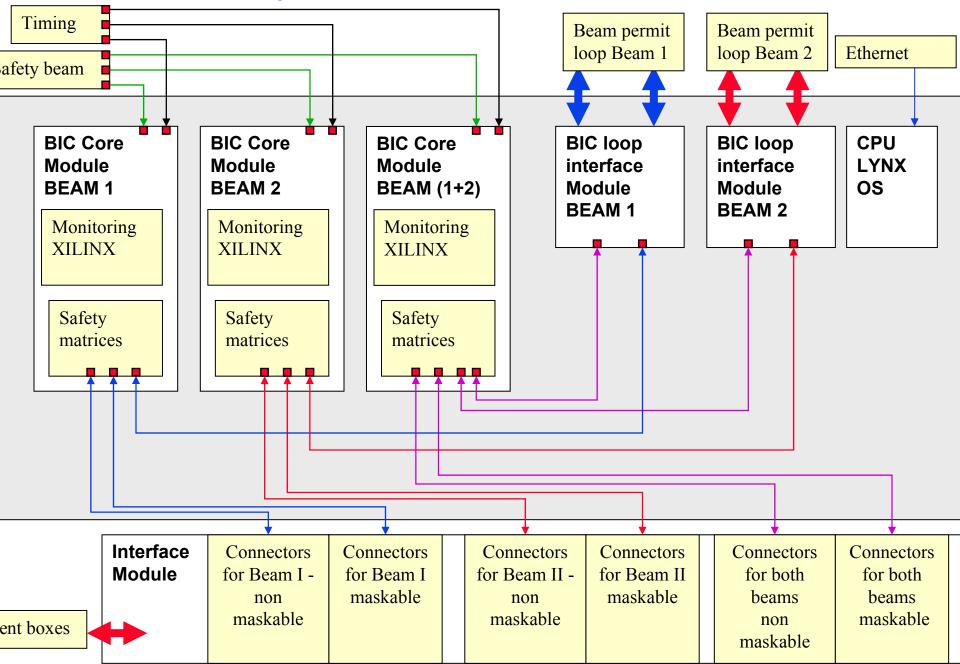
BIC hardware and signal from clients

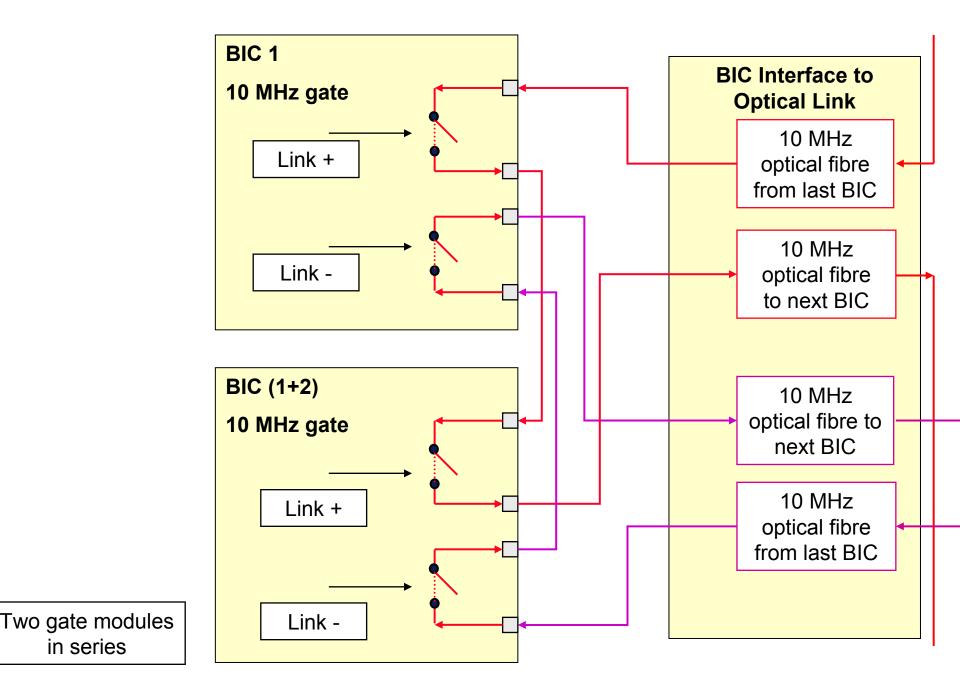
- Some clients give one signal permit / inhibit operation with both beams (max. 7
 - PIC supraconducting magnets, critical and non-critical
 - PIC normalconducting magnets
 - Access
 - Beam Loss Monitors, possibly with two thresholds in BLMs (?)
 - Energy Meter (?)
 - Fast magnet failures
- Some clients give one signal for each beam (max 4)
 - Beam dump system
 - RF system
 - Beam position monitoring and beam lifetime monitoring (to be confirmed)
 - Vacuum system (attention only partly true what about common vacuum system in insertions?)
 - Collimators
- Signals can be maskable or nonmaskable
- Within Beam Interlock Control System: Positive / Negative for each type

	BICL1	
PIC main	1	
BLM highTh	1	
NC magnets	1	
Access	1	
Fast magnet interlock	1	
Energy meter	0	
Experiments	1	
PIC aux	1	
BLM lowTh	1	
	8	
Beam dump	0	
Vacuum	1	
Injection	0	
RF	0	
Beam monitors	0	
Collimators	1	
	2	
Beam dump	0	
Vacuum	1	
Injection	0	
RF	0	
Beam monitors	0	
Collimators	1	
	2	

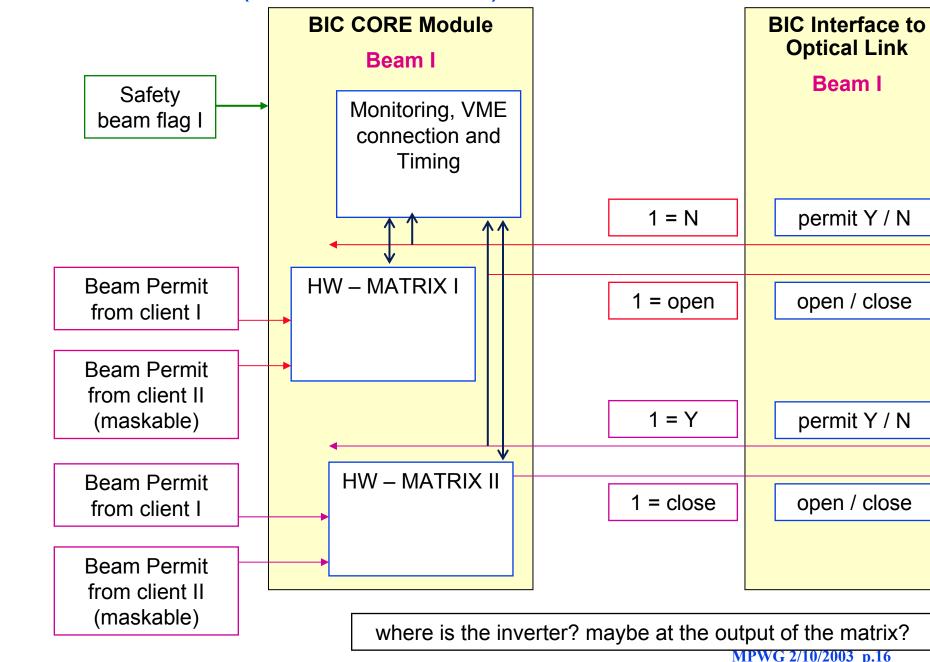
BICR6	
1	
1	
1	
1	
1	
1	
0	
1	
1	
8	
1	
1	
0	
0	
1	
1	
4	
1	
1	
0	
0	
1	
1	
4	

Examples


31	C	IR1L	IR6L
)	Client signals that act on both beams	7	7
)	Client signals that act on both beams and are maskable	3	5
	Client signals that act on both beams and are not maskable	4	2
)	Client signals that act only on beam I	2	4
	Client signals that act only on beam I and are maskable	1	2
)	Client signals that act only on beam I and are not maskable	1	2
	Client signals that act only on beam II	2	4
)	Client signals that act only on beam II and are maskable	1	2
	Client signals that act only on beam II and are not maskable	1	2


			-													
	BICL1	BICR1	BICL2	BICR2	BICR3	BICL3	BICR4	BICL4	BICR5	BICL5	BICR6	BICL6	BICR7	BICL7	BICR8	В
PIC main	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
BLM highTh	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
NC magnets	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	
Access	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Energy meter	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	
Experiments	1	1	1	1	0	0	0	0	1	1	0	0	0	0	1	
PIC aux	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
BLM lowTh	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	7	7	7	7	6	6	5	5	7	7	7	7	6	6	7	
Beam dump	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	
Vacuum	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Injection	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
RF	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
Beam monitors	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	
Collimators	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	
	2	2	2	3	2	2	3	2	2	2	4	4	2	2	2	
Beam dump	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	
Vacuum	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Injection	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
RF	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
Beam monitors	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	
Collimators	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	
	2	2	2	3	2	2	3	2	2	2	4	4	2	2	2	
Sum total	11	11	11	13	10	10	11	9	11	11	15	15	10	10	11	
Beam I+II + Beam																
II	9	9	9	10	8	8	8	7	9	9	11	11	8	8	9	
Beam I+II + Beam																
I	9	9	9	10	8	8	8	7	9	9	11	11	8	8	9	
Beam I+II + Beam																
ll unmaskable	5	5	5	5	5	5	4	4	5	5	7	7	5	5	5	
Beam I+II + Beam																
ll maskable	4	4	4	5	3	3	4	3	4	4	4	4	3	3	4	
																_

BCT for machine protection


- Specification being written by C.Fischer within BISpec
- Possible uses of BCTs for machine protection to provide safe information on beam intensity:
 - minimum intensity of circulating beam is required to inject high intensity beam from the SPS
 - 'safety beam flag' for masking / unmasking client signals to beam interlock controller
 - if dl/dt or (dl/dt · E) drops below a specified value => dump beam
- Consequences:
 - BCT becomes instrument of SIL class (my guess: SIL2)
 - Distribution of beam intensity or/and beam intensity flag around LHC, and to SPS
- Assumptions + Questions:
 - I guess, BDI is responsible for the BCTs
 - Who is responsible for making the safety beam flag?
 - Who is responsible for the distribution of the flag?
 - This is more of less identical to the distribution of the info from the beam energy meter – one should use same technology

VME crate - layout for the LHC – three core solution

IC core for beam I (same for beam II)

Masks and safety beam flags

- Some signals cannot be masked
- Some signal can be masked. There are three options to be selected by the operator:
 - 1. no mask (default option)
 - 2. mask only for « safety beam » that means for low beam intensity (for high beam intensity signal is NOT masked)
 - 3. mask independent of beam intensity (can be risky)

Inputs for one core module

- 8 signals from clients, positive
- 8 signals from clients, negative
- 1 signal from beam safety flag, to be split for positive and negative branch
- 2 signals from beam permit loop
- 4 masks
- 4 conditions for masking
- Drive signals across line? YES
- Does the patching module need active components? YES
- Send permit signals to all clients?

Interface to clients: Tests

- It should be possible to test the entire systems without relying on the users
 - all user input signal need to be set to 0 or 1
 - is it necessary to address both redundant signals? YES
 - is it necessary to do this for each beam in an independent way? **YES**
 - how to do it?
 - how to avoid that the system is in test mode during beam operation?
- Test if redundant signals are both ok (synchronisation issue, since one signal will always come first)
- For each beam, one BICI, or for both beams one BICI?
 - some users act always on both beams (PIC, BLM, access, ...)
 - some users act only on one beam (Vacuum, RF, SPS, beam dump, ...)

Questions for beam core module

- Two BIC core modules, one for each beam in one VME crate, or in two VME crates?
- Alternative: have one core modules for each beam, or mixed core modules?
- Number of inputs: total number, maskable, conditional masks to be defined
- Strategy using safety beam flag:
 - for all maskable channels the same
 - for each maskable channel to be selected
- At what level to monitor the signals towards the users (in core module, in BICI?)