J. Wenninger

Participants : R. Assmann, B. Dehning, B. Goddard, R. Schmidt, J. Wenninger, M. Zerlauth (CERN)

S. Herb, B. Holzer, J.P. Jensen, J. Maas, M. Schmitz, M.Werner F. Willeke, K.Wittenburg (DESY)

Written summary is available on the MPWG WEB page

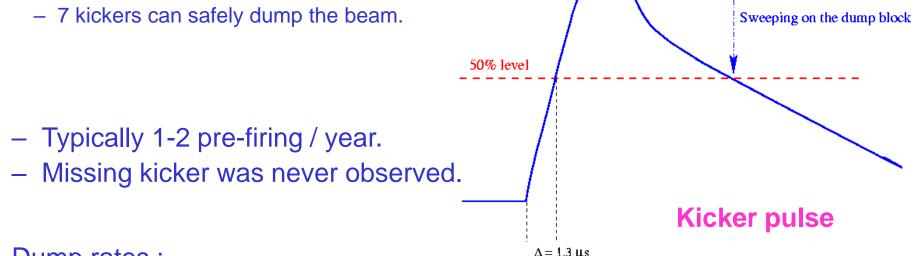
HERA

- HERA is a 2 ring e-p collider of ~ same size than the SPS (6 km).
- Proton beam parameters :
 - Injection at 41 GeV/c.
 - Collisions at 820-920 GeV/c.
 - Proton beam intensity 100 mA in 180 bunches : $\approx 1.4 \times 10^{13}$ protons total.

HERA ALARM SYSTEM

- At HERA interlock clients are connected to the 'alarm loop' (current loop 1.6 A / 100 V).
- Initially : total transmission delay in the loop \leq 1 ms.
- Clients can 'manipulate' the current in the loop : if the current drops below a threshold → beam dump.
- Beam losses are handled by 2 client systems :
 - Quench protection system :
 - Quench detection within ~ 10 ms.
 - Beam Loss Monitor (BLM) system :
 - One BLM (PIN diode) / quadrupole.
 - Integration / reaction time of 5 ms.
 - At high energy, the dump is triggered when 5 BLMs exceed the threshold level at the same time.
 - Dump levels depend on energy, but not on the loss duration.
 - BLMs are used to adjust the collimators (but also the exp. backgrounds).

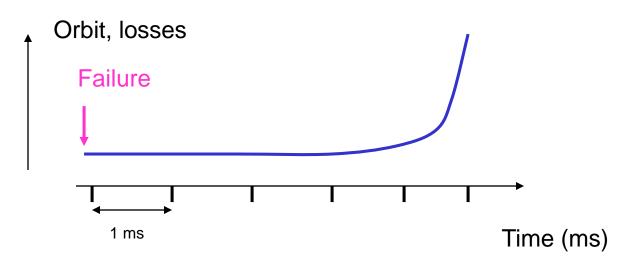
HERA I – fast failures


- For HERA I, the machine protection systems were adequate.

- Fast losses / failures :
- 6 electrical circuits had time constants of ~ 20-100 ms. (warm quadrupoles)
- Fast losses (< 5 ms) were rarely observed and did not pose problems.

Beam dumping system

- Kickers with spark gap switch.
- Beam tracking with 1 DCCT (no redundancy).
- Pre-firing of 1 kicker triggers other kickers within
 1 we Ne sefety issue of pre-firing
 - 1 μ s. No safety issue of pre-firing.



Dump rates :

- One beam abort (by alarm system) per day.
- 1-2 aborts / week by the BLM system.

HERA II – fast failures

- For the HERA II upgrade (startup fall 2001) the number of critical circuits (insertion/low-beta quads) with short time constants (~ 20-100 ms) was increased from 6 to 14.
- The MTBF for those circuits was down to ~ 300 hours (aging / insufficient maintenance).
- Following a failure of such circuits, the beam is lost very rapidly (0.5-1 ms) after a short interval → cannot be caught by BLMs !!

Actions...

The situation was critical and was improved with the following actions :

- MTBF for the critical circuits was raised to ~2000 hours (inspection and revision of the PCs).
- The processing of some internal PC interlocks was reduced to 0.2 ms by generating interlocks directly from the thyristors (and not over the control PLC).
- An external current surveillance is under development.
- Delays in the alarm loop were reduced to \leq 0.1 ms.
- A fast interlock on beam lifetime was developped & put into operation.
- The delays in the beam dumping system were minimized.
- A BPM interlock will be implemented.

Expectation : when all actions will be completed there should be only 1 uncaught failure over 5 years.

PCs

Sources for PC failures :

- Connections.
- Temperature.
- External sources (electrical network).
- Aging.
- Water / humidity.
- Insulation.
- Air filters.

Improvements :

- Increased reliability with preventive maintenance (not just reaction on faults)
 - 1 day/month is now spent on preventive maintenance (comprise wrt not touching a running system...)
- Thermography with infrared cameras to detect hot/cold spots.
- Quality control by system engineers.

PCs

Electrical network :

- Sensitive to thrunderstorms within ~ 200 km.
- Regular (daily) power sags (10-20% for ≤ 120 ms) part of the normal operation of the electricity grid. HERA PCs seem to be sensitive to such sags due to insufficient filtering.
- − Tap changer movements on the main transformers lead to current variations of ~ 10^{-4} for some PCs → small (≤ 0.1%) beam losses ?

Interlocks :

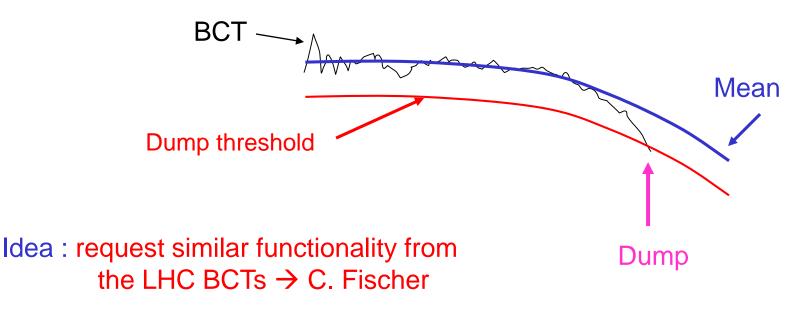
- Run the PC as long as possible to leave time for beam dump : optimization of control PLC timings and interlock generation.
- Detection of internal interlocks (and dump trigger generation) within 0.2 ms.

PC surveillance

SPS ISO Amplifie Magnet Current Alarms Voltage signal over circuit is used to simulate the PC current signal. Digital Data High pass filter to extract high frequency (fast changes / transients) components. Power Converter High frequency component compared to threshold \rightarrow dump signal. Info is digitized and stored in FPGA for analysis. A/D A/D F In the design phase Ρ G RC-High-Pass Comparator A Filter Dump element Initialise Trigger Level Protection High-Pass A/D Filter RAM 10

Normal Conducting Magnet $\gamma\gamma\gamma$

_


_

_

_

Beam intensity interlocks

- Fast interlock based on fast BCT signal (filtered at bunch frequency).
- Sum signal over one turn is compared to a moving sum + threshold.
- Maximum tracking rate of the mean is 0.7 mA/ms (1 ms ~ 40 turns).
- In operation...
- BCT sum signal resolution is apparently ~ 0.3%.

BPM interlocks

- BPM interlocks were implemented at HERA from the beginning, but never used so far.
- The system is similar to the BLM system :
 - Each individual BPM (~ 100 / plane) can generate an interlock.
 - Response within a single turn.
 - Settable threshold: aim for ±3 mm.
 - Uses 'healthy' arc monitors.
 - Dump trigger : No. BPMs interlocks + No. BLM interlocks ≥ 5
 → 'democratic' system.
- Interlock is tested at the moment, but not activated.
- Open issue : reliability !

Collimators

Collimator use at HERA :

- Collimators are out at injection.
- Collimators are set to $10-11\sigma$ during the ramp (what σ ? Since it shrinks during the ramp....).
- Collimators are set to 7σ for collisions.
- Collimator setup is done with BLMs and experimental background signals.
- No attempt to use BLMs near collimators against fast losses : Frequent signal spikes due to transients that are not harmful to HERA.
- Beam tails :
 - Injection & ramp : ~ liitle tails.
 - Collisions : tails fill all space up to collimator openings.

Summary

- Even a rather 'uncritical' (wrt LHC) machine like HERA was caught struggling with fast beam losses that we are trying to anticipate.
- They seem to have understood the causes : warm magnets !

Ideas for collaborations :

- Installation of fast LHC BLMs near the HERA collimators to measure and understand fast losses of a fraction of the beam.
- Collaboration for the detection of fast magnet failures.
- Collaboration for the development of fast lifetime measurements.
- Collaboration on the understanding of fast beam losses.