LHC Beam Loss Monitor

Design Considerations of Digital Parts.

LHC Machine Protection WG meeting (28 May 2004)

LHC Beam Loss Monitor (TOC)

- BLM Overview
- Tunnel
 - CFC Card Digital Part
 - Implementation of tunnel FPGA
 - Frameword for Transmission
 - Error-free Communication
 - Communication Link Options
 - GOL Transmitter
 - Identification of cards
 - Surface

- Transmission Check & Tunnel Status
- Signal Select Logic
- Running Sums
- Quench Level Thresholds
- Threshold Table
- Logging Data Arrangement
- Control Room Representation
- Post Mortem Data Recording
- **Summary**
- Other Developments

BLM Overview

CFC Card Digital Part

Design criteria

- Radiation Tolerant Devices available:
 - Actel SX/A family (\$40 for the 54SX32A)
 - Xilinx QPRO family (~20x more)
- Not very complicated digital part design but
 - Triple module redundancy (TMR)
 - Medium device
- Choose PQFP instead of BGA package
 - Will give simpler and cheaper PCB
 - Make use of socket

Plastic Quad Flat Pack

Ball Grid Array

Implementation of Tunnel FPGA

Tunnel PCB arrangement

- 8x12bit ADC in parallel + control signals,
- 8 Counter inputs,
- Actel 54SX with 208 pins
- Connectors for GOH mezzanines.

 Production of CRC-32 error detection redundant information

× To be done:

- Counters
- Registers for ADC data
- Multiplexing of all information

Dependant on communication channel choice.

Frameword for Transmission

• Formatting of the frameword for transmission (256 bits)

Transmission of frameword every 40µs.

□ The data rate must be high enough to minimise the total latency of the system .

Error-free Communication

The steps taken to ensure a reliable communication link:

Double (redundant) optical link

• CRC-32 error check algorithm

- All single-bit errors.
- All double-bit errors.
- Any odd number of errors.
- Any burst error with a length less than the length of CRC.
- For longer bursts Pr = 1.16415*10⁻¹⁰ probability of undetected error.
 > 224 bits of data plus 32 bits of CRC remainder = 256 bits.

8b/10b encoding

- Clock data recovery (CDR) guarantees transition density.
- DC-balanced serial stream ones and zeros are equal/DC is zero.
- Error detection four times more characters.
- Special characters used for control sync, frame.
 - > 256 bits of data are encoded in 320 bits = 64 extra bits.

Communication Link Options

I. Use the Gigabit Optical Link (GOL) chip

- □ High-speed transmitter ASIC (at 800 or 1600 Mbps).
- **Radiation tolerant layout (in 0.25 mm CMOS technology).**

Also includes:

- □ Analogue parts needed to drive the laser.
- □ Algorithm running that corrects SEU.
- 8b/10b encoding.
- 16 or 32 bit input.
- **Error reporting (SEU, loss of synchronisation,..)**

More Advantages:

- □ Very low cost (50CHF for both ASIC & Laser or 200CHF as mezzanine).
- Already tested and functional.
- Independent system.
- □ Allows later improvement of design.

II. Build a custom communication link.

GOL Transmitter

Identification of cards

Identification of cards

- Barcode system for installation and indexing of cards, cables, detectors, position
- **Digital ID of cards on every transmission/check**
- Serial number for each frame transmitted

Transmission Check & Tunnel Status

The Surface FPGA receives:

- > Double/redundant optical transmission
 - 4 optical receivers on each card
 - If the GOL is used then the TLK chip from TI has direct compatibility.

✓ 16 channels/detectors data

- Receiver of 2 tunnel cards
- CRC-32
 - Error check / detection algorithm for each of the signals received.
 - Comparison of the pair of signals.
- Signal Select block
 - Logic that chooses signal to be used
 - Identifies problematic areas.
- Tunnel's Status Check block

Signal Select Logic

CRC32 check		Comparison	Ontract	Demedia
А	В	CRCs	Output	Remarks
0	0	0	Dump	Both signals have error
0	0	1	Dump	S/W trigger (CRCgenerate or check wrong)
0	1	0	Signal B	S/W trigger (error at CRC detected)
0	1	1	Signal B	S/W trigger (error at data part)
1	0	0	Signal A	S/W trigger (error at CRC detected)
1	0	1	Signal A	S/W trigger (error at data part)
1	1	0	Dump	S/W trigger (one of the counters has error)
1	1	1	Signal A	By default (both signals are correct)
*Where 1:Correct, 0:Error				

- In cases when only one signal has errors the system continues by using the correct and issuing a S/W trigger.
- If the trigger shows to be repetitive it can give a hint of the problematic area.

Running Sums

✓ 11+1 Running Sums per channel

✓ 3 time regions

- 40µs-1ms
 - run completely internally
- 1ms-5ms
 - run completely internally
- 5ms-100s
 - external SRAM to store the data
 - Uses averages to reduce data
- ✓ 4 Running sums per region
- Threshold Table
- SRAM Controller
 - 16 writes and
 - □ 192 reads every 40µs only for the RS.

Quench Level Thresholds

Threshold values are dependant on

- Beam Energy and
- Integration Time

The system constantly transmits a value which corresponds to the particles seen over the integration time of 40µs.

Using this values the surface
 FPGA calculates and keeps 11 more
 running sums per detector.

• The max integration time needed to be observed is 100s.

• The rest are found by identifying the places where the approximation introduces the minimum fitting error.

Figure and error calculations by G. Guaglio

Threshold Table

Threshold values are dependent on Beam Energy and the Integration Time

- 32 energy levels
 - Received through the back-plane
 - **I** from BET module (SIL-3)
 - as a Digital word

• Unique 2D threshold table for each of 4000 detectors

- **Stored in a RAM at the mezzanine card.**
- Beam permit will allow internal update
- Can be used as a calibration and offset correction tool.

Calculations

- □ 11+1 *Time windows*
- 32 Beam Energy Levels (0 ~ 7 TeV) 6,144 Th & 2,048 W values
 - 16 Ionisation Chambers

or 29 KB & 11 KB respectively per card

Logging Data Arrangement

These data have to be read with a rate of a second in order to be stored in a database as well as to give a graphical representation for the control room.

- **The measured & calculated data.** (480 Bytes)
- **The max. values in the last second** (480 Bytes)
- □ The used Threshold values. (480 Bytes)
- □ Additional info (card ID, status, errors) (~16 Bytes)

Total from each card ~ 2KB per second

□ The card's *Threshold* table. (~ 29 KBytes)

Control Room Representation

The Control Room will be able to issue from logging data the Warning levels alerts and have a graphical representation which could look like:

The 12 values transmitted for each detector to the CPU will then have to be

- normalised by their corresponding threshold value
- and from those the max value is displayed.

Post Mortem Data Recording

• Two circular buffers

- A. 2000 framewords (1000turns) of both signals received
- **B.** Integrals of 10 ms (data useful for further analysis)
- Double the above system and toggle between them using the stop PM recording trigger
 - Never stop recording (i.e. avoid start input)
 - Test of PM will be possible anytime
 - Accidental/error-triggering proof

• PM freeze from TTCrx through the backplane.

• Time-Stamp appended later by crate CPU.

At PM freeze the CPU records the time and later when it reads the PM Data appends it to them.

• Calculations:

1000 turns => 2000 acquisitions * ~250 bits frameword

=> ~ 60 KB/signal * 4 signals/card = 240 KB /card

=> 240KB/card * 16 cards/crate = 3.75 MB /crate

Summary

- Tunnel FPGA will be Actel's family SX/A with 208 pin sitting on a socket.
- Surface FPGA Altera's Stratix EP1S30 with 780 pin.
- All basic functions have been implemented.
- Test model of surface digital part is ready which uses:
 - Error checking of transmission.
 - Unique threshold table for each detector.
 - Averaging for longer running sums.

Next Steps

- Decide the communication link which will be used (will dictate the whole of the tunnel digital implementation and the rest of the surface part).
- Logging will be updated every second.
- PM will toggle between two buffers.

Other developments

Test acquisition card with PC link (Roman Leitner, Technical student)

- Tunnel system as it is.
- Same mezzanine with BLMTC.
- Propagate data via USB to a PC for further analysis and storage.

First use at DESY (Markus Stockner, PhD student)

System test with circulating beam.