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Quench mechanisms and their time constants

Pierre Pugnat, AT/MTM

• 12 Test 

benches

• Possibility to 

operate at 1.9K 

& 4.4 K

• 14 kA / 16 V 

power supplies

• Cryomagnets 

can be equipped 

with anticryostats 

& shafts for
- Magnetic 

Measurements

- Quench 

LocalisationView of SM18 
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Outline

2 quench scenarios of a dipole are considered due to beam loss:

– 450 GeV i.e. 0.54T

– 7 TeV i.e. 8.33T

1/ the voltage builds up and exceeds the threshold of the quench 
detector after t0

2/ the quench detector detects the voltage after some time t1
3/ the quench detector fires quench heaters and triggers the energy 

extraction t2
4/ the heaters become efficient after t3
5/ the PIC is informed, and sends a dump request to the BIC t4
6/ the BIC sends a dump request to the beam dumping system t5
7/ the voltage exceeds the diode voltage, and the current starts to 

bypass the magnet t6
8/ the switch opens, and the current in the string of magnets decays t7
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Generalities: Apologies for those who know…

• What is a quench of a 
superconducting Magnet ?

 It is the irreversible transition 
toward the normal state via a 
thermal run away.

• Quench occurs in general locally 
and must be spread “globally” to 
limit the Tmax

 use of quench heaters can be 
necessary (case of LHC main 
magnets)

• Resistive transition of a 
superconductor does not mean 
necessary a quench…

Nb-Ti characteristic surface & lines

Superconducting 

below the surface,

Resistive above
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Accelerator superconducting magnets are 

not “cryostable” at nominal conditions

• Steckly parameter

• Margin given by the current 

sharing temperature

• To give some comparisons:
Rutherford  type cable

Margin

RHIC* 30 %

HERA* 25 %

LHC 14 %

*From 

K.-H. Mess et al.

“Superc. Acc. 

Magnets”(1996)
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Quench Origin without beam: mainly due to 

the mechanical activity of the winding

• The Magnet Disturbance 

Spectrum (Wipf’78):

• Quench Mode without beam:

When a conductor motion

 Q > MQE (10-100mJ for 1 strand)

Then a quench can develop.

• Example of mechanical activity 

signature just before a quench:

Space 

Distribution

Time

Point Length 

>> Lmpz

Volume 

>> Vmpz

Transient 

t << k Lmpz2/Cp
J J/m J/m3

Continuous W W/m W/m3
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Quench Origins: trt @ 100mV & High Field

• Very few 
dipoles with 
relevant 
conductor 
problems

 Rejected

• For all other, 
quenches 
originate from 
conductor 
motion(s) 
(training & 
detraining)

10 ms 

validation 

window
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Statistic on 350 training Q.

<trt> = 9.2 ms, s = 3.7 ms

Min - Max = 3 – 30 ms

For provoked quenches 

@ miniE, trt  200 ms
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Chronological sequence of events

• Energy or power deposition sufficient to quench locally a part 

of the superconducting cable,

• The quench propagates (1-4 m/s or 20-30 m/s)  the voltage 

threshold of 100 mV for the detection is reached,

• Time window of 10 ms to validate the quench,

• The quench occurred in general locally and must be spread 

“globally” to limit the Tmax  Use of Quench Heaters i.e heater 

delays function of the current

• After QHs became effective, the 6V threshold of the diode is 

reached  bypass of the applied current
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Quench Heater Delay 
Quenches occurred locally & must be spread “globally” to 

limit the Tmax
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By-pass to the diode:
Are results obtained on Test Benches relevant ?

Quench Current (kA) 3 11.85

tr6V (ms after trigger) 230       80-120
tr6V depends on the magnet RRR  

RRR = R(300K)/R(10K)

Case of provoked quenches @ 

miniE with 1LF-QH & slow PA
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Summary

Comments Injection, 0.54T Nominal, 8.33T

t0 100 mV reached after Q. start, 

Spread of physical origin depend 

of the deposited E 

can be > 5 s 3-200 ms

t1-t0 Validation time for quench detector 

(see the presentation of Reiner)

10 ms 10 ms

t3-t2 Heater delay, range at 2 s

Spread of physical origin 

70-130 ms 15-40 ms

t6-t2 Are typical values measured on TB 

relevant for the machine ? 

Function of the RRR of conductors

> 230 ms ~ 80-120 ms

• Chronology of Events

• Open questions:

– Effect on the beam of the field perturbation at the local quench start?

– Effect on the beam of the field perturbation at the “global” quench start?


