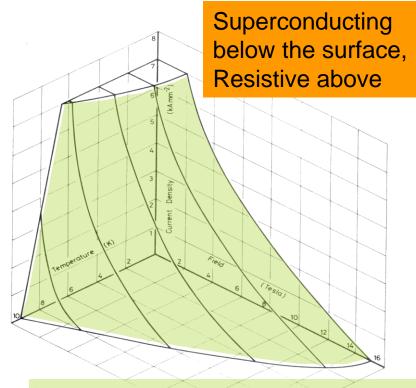
Quench mechanisms and their time constants Pierre Pugnat, AT/MTM

Outline

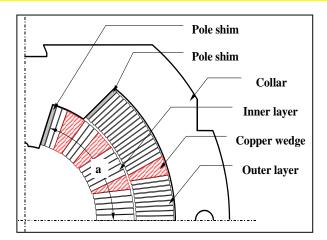
2 quench scenarios of a dipole are considered due to beam loss:

- 450 GeV i.e. 0.54T
- 7 TeV i.e. 8.33T
- 1/ the voltage builds up and exceeds the threshold of the quench detector after t_0
- **2/** the quench detector detects the voltage after some time t_1
- **3/** the quench detector fires quench heaters and triggers the energy extraction t_2
- 4/ the heaters become efficient after t₃
- 5/ the PIC is informed, and sends a dump request to the BIC t_4
- 6/ the BIC sends a dump request to the beam dumping system t_5
- **7/** the voltage exceeds the diode voltage, and the current starts to bypass the magnet t_6


8/ the switch opens, and the current in the string of magnets decays t_7

Generalities: Apologies for those who know...

• What is a quench of a superconducting Magnet ?


It is the irreversible transition toward the normal state via a thermal run away.

- Quench occurs in general locally and must be spread "globally" to limit the T_{max}
 ⇒ use of quench heaters can be necessary (case of LHC main magnets)
- Resistive transition of a superconductor does not mean necessary a quench...



Nb-Ti characteristic surface & lines

Accelerator superconducting magnets are not "cryostable" at nominal conditions

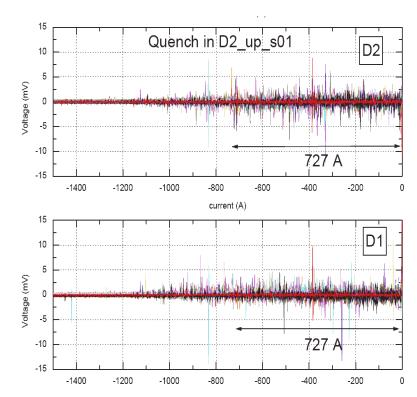
• Steckly parameter

$$\alpha_{St} = \frac{\rho S_{Cu} J_c^2}{h p (T_c(B) - 1.9)} >> 1$$

• Margin given by the current sharing temperature

$$\Delta T_{sc}(I,x) \approx \Delta T_{c}(B(x)) \left(I - \frac{I}{I_{c}(B(x))} \right) \approx 1.4K$$

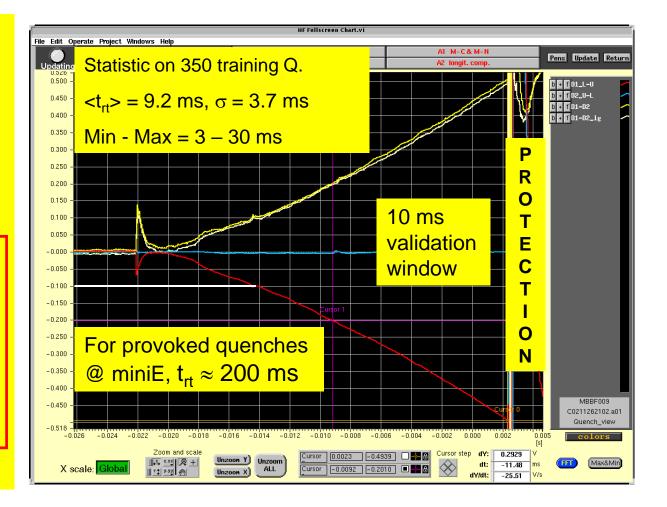
• To give some comparisons:


		Margin
From KH. Mess et al. "Superc. Acc. Magnets"(1996)	RHIC	30 %
	HERA*	25 %
	LHC	14 %

Quench Origin without beam: mainly due to the mechanical activity of the winding

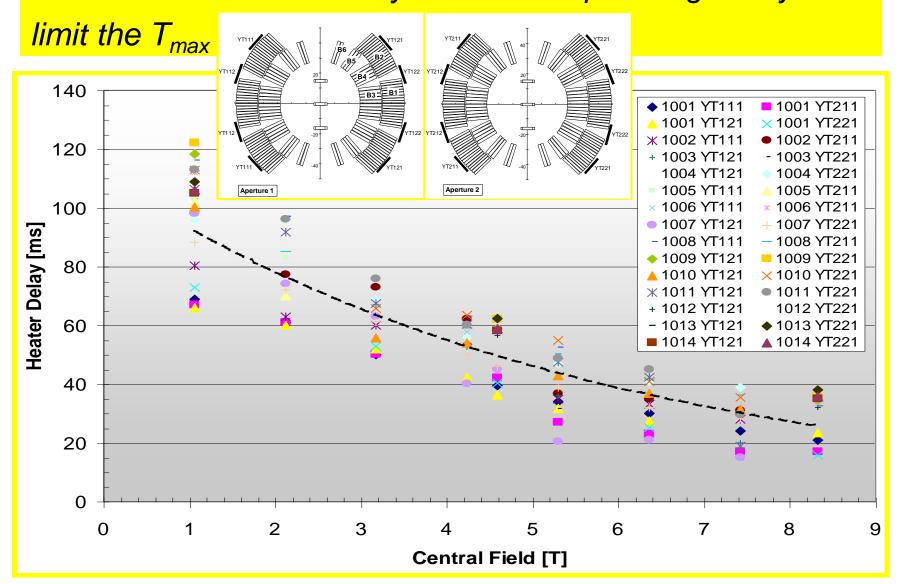
The Magnet Disturbance
Spectrum (Wipf'78):

	Space Distribution			
	Point	Length >> Lmpz	Volume >> Vmpz	
Time				
Transient	J	J/m	J/m ³	
<i>t</i> << <i>k</i> Lmpz²/Cp				
Continuous	W	W/m	W/m ³	


 Quench Mode without beam: When a conductor motion
⇒ ΔQ > MQE (10-100µJ for 1 strand) Then a quench can develop. • Example of mechanical activity signature just before a quench:

Quench Origins: t_{rt} @ 100mV & High Field

- Very few dipoles with relevant conductor problems
 - \Rightarrow Rejected


 For all other, quenches originate from conductor motion(s) (training & detraining)

Chronological sequence of events

- Energy or power deposition sufficient to quench locally a part of the superconducting cable,
- The quench propagates (1-4 m/s or 20-30 m/s) ⇒ the voltage threshold of 100 mV for the detection is reached,
- Time window of 10 ms to validate the quench,
- The quench occurred in general locally and must be spread "globally" to limit the T_{max} ⇒ Use of Quench Heaters i.e heater delays function of the current
- After QHs became effective, the 6V threshold of the diode is reached ⇒ bypass of the applied current

Quench Heater Delay Quenches occurred locally & must be spread "globally" to

By-pass to the diode: Are results obtained on Test Benches relevant ?

Summary

• Chronology of Events

	Comments	Injection, 0.54T	Nominal, 8.33T
t _o	100 mV reached after Q. start, Spread of physical origin depend of the deposited E	can be > 5 s	3-200 ms
t ₁ -t ₀	Validation time for quench detector (see the presentation of Reiner)	10 ms	10 ms
t ₃ -t ₂	Heater delay, range at $\pm 2 \sigma$ Spread of physical origin	70-130 ms	15-40 ms
t ₆ -t ₂	Are typical values measured on TB relevant for the machine ? Function of the RRR of conductors	> 230 ms	~ 80-120 ms

• Open questions:

- Effect on the beam of the field perturbation at the local quench start?
- Effect on the beam of the field perturbation at the "global" quench start?