

- ➔ 3 different detection systems involved
 - Local quench detectors (trigger quench heater power supplies)
 - $U_{TH} = 100 \text{ mV } t_{DET} = 10.5 \text{ ms}$ (fixed parameters)
 - Main busbar protection system
 - $U_{TH} = 1 V t_{DET} = 100 ms$ (programmable parameters)
 - Protection system for HTS current leads
 - $U_{TH} = 3 \text{ mV } t_{DET} = 100 \text{ ms}$ (programmable parameters)
- In case of a quench the information is transmitted to the QPS quench loop controller via the QPS internal current loop
- ➔ The quench loop controller interfaces to the PIC via a type A interlock

- → Quench Loop Controller
 - Level triggered 4 state micro-controller based detection system
 - NO QUENCH, QUENCH, SHORTED LOOP, EARTH FAULT
 - Controller includes voltage source ($I_{LOOP} = 100 \text{ mA}$) in the even points
 - Redundant detection system with 1 out of 2 evaluation scheme
 - System is tested once per month (every detector)

- ➔ 2 different detection systems involved
 - Digital quench detectors of type DQQDI and DQQDT (trigger quench heater power supplies)
 - $U_{TH} = 100 \text{ mV } t_{DET} = 10 \text{ ms}$ (programmable parameters)
 - Protection system for HTS current leads (triggers quench heater power supplies)
 - $U_{TH} = 3 \text{ mV } t_{DET} = 100 \text{ ms}$ (programmable parameters)
- These systems are integrated in so-called Global Protection Units and interface directly to the PIC via an interlock type A or B

