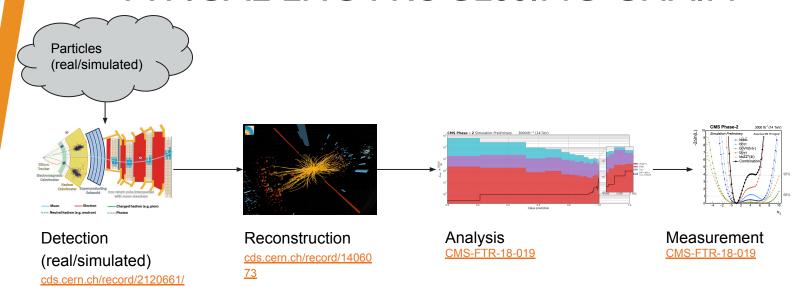


DIFFERENTIAL PROGRAMMING FOR DETECTOR OPTIMISATION

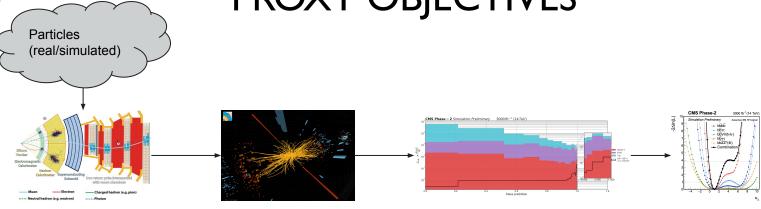
Giles Strong, on behalf of the MODE Collaboration*
Analysis Ecosystems II, IJCLab, France - 23/05/22

TYPICAL LHC PROCESSING CHAIN



Each stage optimised separately

ISOLATED OPTIMISATION: PROXY OBJECTIVES



Detection:

- Track first, destroy later
- Kinematic precision
- Dedicated sub-detectors
- Design convenience over analysis convenience

Reconstruction:

- Generic optimisation of algorithms
- Fixed working points
- Expert-interpretable data-representations (PID)

Analysis:

Signal/background separation

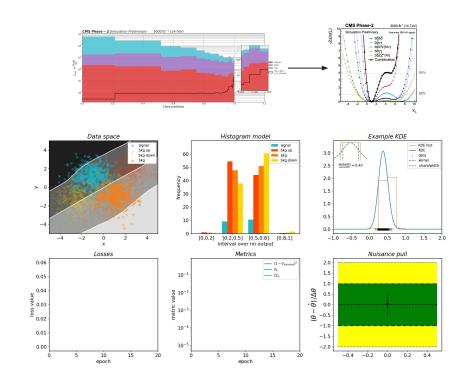
Measurement:

- Domain-driven categorisation
- Separate by decay channel, combine later

Many of these are "necessary evils" for HEP! Time, interpretation, MC corrections, etc.

PAIRED OPTIMISATION: ANALYSIS & MEASUREMENT

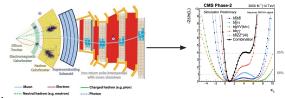
- Optimise analysis to directly optimise the measurement:
 - DNN training accounts for systematic uncertainties
 - Loss function monotonic w.r.t Pol uncertainty, CL_s limits, discovery significance, etc.
- INFERNO (<u>de Castro & Dorigo, 2018</u>)
- NEOS (Simpson & Heinrich, 2022)



Animation: NEOS, Nathan Simpson

PAIRED OPTIMISATION: DETECTOR & MEASUREMENT

- CMS-FTR-18-019 projection study for HL-LHC di-Higgs sensitivity
- Analysis reused to test impact of new CMS timing detector in <u>CMS-TDR-020</u>
- But:
 - No reco. algo. re-optimisation: changes computed by simple rescaling
 - No analysis re-optimisation
 - Fixed test points



	Signal increase (%)		Expected significance	
Di-Higgs decay	BTL	BTL+ETL	No MTD	MTD
bbbb	13	17	0.88	0.95
bbττ	21	29	1.3	1.6
$bb\gamma\gamma$	13	17	1.7	1.9
bbWW			0.53	0.58
bbZZ			0.38	0.42
Combined			2.4	2.7

35ps (above) 50ps (below) timing resolution

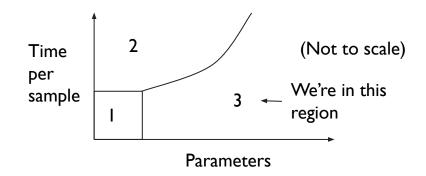
	Expected significance	
Di-Higgs decay	No MTD	MTD
bbbb	0.88	0.94
bbττ	1.3	1.48
$bb\gamma\gamma$	1.7	1.83
bbWW	0.53	0.58
bbZZ	0.38	0.42
Combined	2.4	2.63

Tables: <u>CMS-TDR-020</u>

MODE: WHAT IF...

- What if just like measurement-aware analysis-optimisation, we could go one step further:
- Measurement-aware detector-optimisation
- MODE mandate:
 - Make simulation & analysis chain differentiable
 - Specify physics goal as a loss function
 - Compute analytic dependence of performance on detector parameters
 - Design end-goal-optimal instruments
- Can it be achieved?
 - CERN LHC-style detectors = huge-parameter space + complicated simulation and analysis algorithms

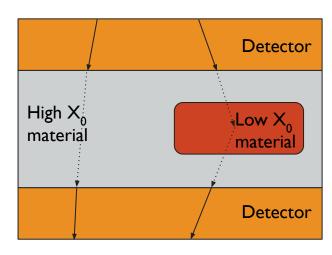
Let's start with a simple use-case: muon tomography



- . Grid/random search
- 2. Bayesian optimisation, Simulated annealing, genetic algorithm, particle swap optimisation, ...
- 3. Gradient-based optimisation: Newtonian, gradient descent, BFGS, ...

TOMOGRAPHY VIA MULTIPLE SCATTERING

- Consider a volume with unknown composition
 - E.g. Shipping container, archeological site, nuclear waste, industrial machinery
 - Want to infer properties of the volume:
 - E.g. build a 3D map of elemental composition
- Cosmic muons scattered by volume according to radiation-length (X₀ [m]) of elements in material
 - Measure muons above and below volume
 - Kinematic changes provide info on material composition

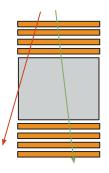


 $\begin{array}{ll} \text{High X}_0 = \text{low} & \text{Low X}_0 = \text{high} \\ \text{scattering} & \text{scattering} \end{array}$

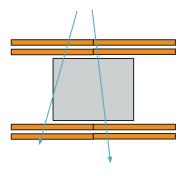
X₀ = average distance between scatterings

PROBLEM

- Each use-case likely to have a budget:
 - E.g. fiscal, heat, power, spatial, imaging time
- How should detectors be positioned to best function in each use case subject to constraints?
- Domain knowledge, experience, and intuition can help
 - But solutions likely to be based on heuristics and proxy objectives (e.g. lowest uncertainty on muon-path angles)



Example 1: Muons measured precisely but less efficiently

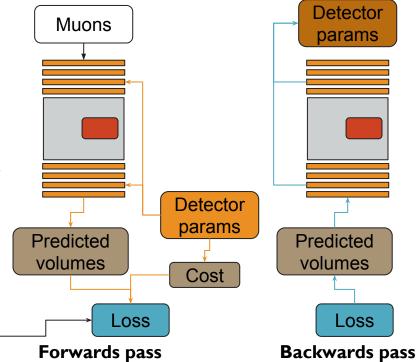


Example 2: Muons measured less precisely but more efficiently

TOMOPT

- Python package for differential optimisation of muon-tomography detectors
 - Modular design
 - PyTorch provides autodiff
 - Still underdevelopment; aim is an open-source package
- First, express the entire inference chain as a differentiable system
 - We can now compute the analytical effects of detector parameters (position, size, resolution, etc.) on system outputs
- Now express the desired task as a loss function
 - E.g. error on X_0 predictions, detector costs, time to achieve desired resolution
- We can now backpropagate the loss gradient to detector parameters and optimise via gradient descent
 - Just like a neural network

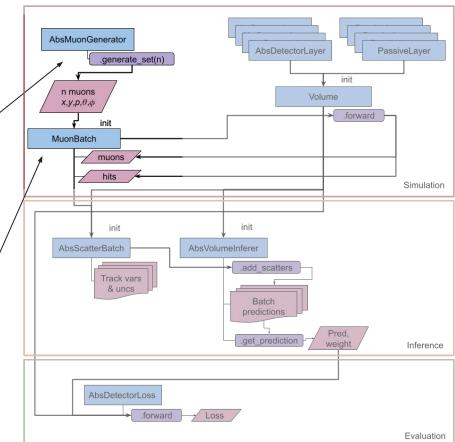
Known volumes



TomOpt contributors: Giles Strong, Tommaso Dorigo, Andrea Giammanco, Pietro Vischia, Jan Kieseler, Maxime Lagrange, Federico Nardi, Haitham Zaraket, Max Lamparth, Federica Fanzago, Oleg Savchenko, Nitesh Sharma, Anna Bordignon

BASIC MODULES: MUON GENERATION

- Can generate muons by sampling literature models [2015, 2016]
- Sampling can provide realistic spectra for incoming angles and momenta
- Code designed to handle many muons at once

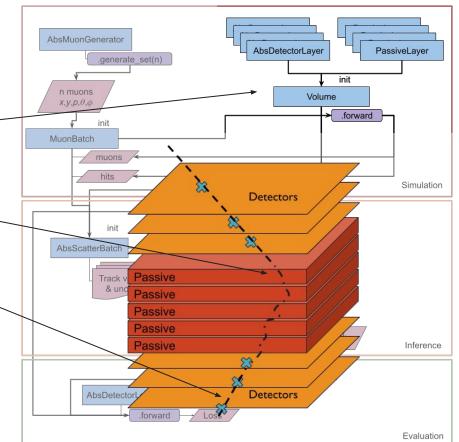


BASIC MODULES: VOLUME SPECIFICATION

 A volume consists of Layers in z stacked on top of each other

• Passive layers scatter muons according to material density (X_0)

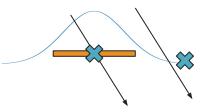
Detectors record muon positions (hits)
 with a certain resolution and efficiency



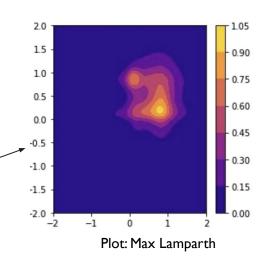
DETECTOR MODELLING

- Assume commercial detectors ⇒ fixed resolution, fixed efficiency, fixed cost per m²
- Optimise XYZ position and XY span
- But, muons either hit or miss detectors. How can we make hits be differentiable w.r.t detector parameters?
- Instead, let resolution and efficiency be distributed, e.g. Gaussian centred on panel, with width set by panel span
 - The PDF at the muon position is now diff.
 w.r.t panel position and span
 - Can further generalise by using Gaussian

 Mixture model

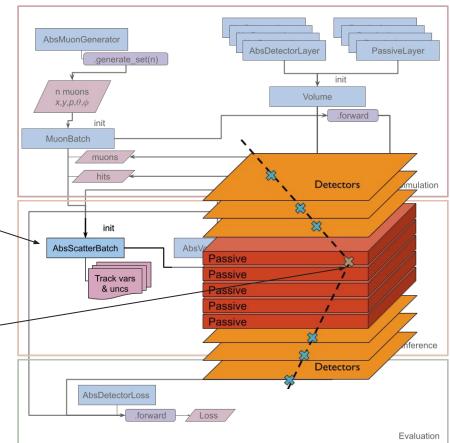


Both muons recorded, but with different resolutions



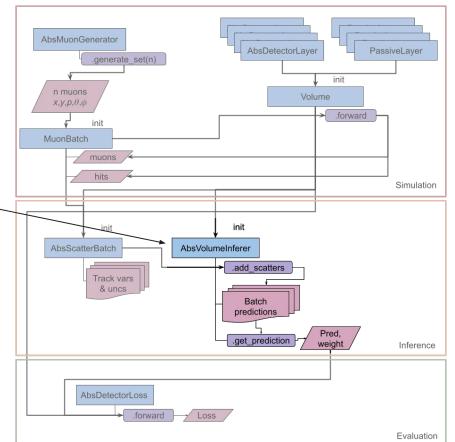
BASIC MODULES: SCATTER INFERENCE

- Next, need to fit tracks to the detector hits
- Fit uses analytic maximum likelihood considering hits and their uncertainties
 - Is fully differentiable w.r.t detector parameters
- Can then compute track parameters and their uncertainties for each muon
 - Uncertainties computed via autograd
 - Also provides the Point of Closest Approach between the tracks



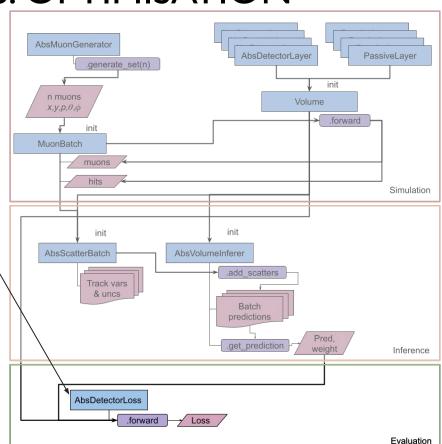
BASIC MODULES: VOLUME INFERENCE

- Next, use muon track information to infer properties of the volume
- Can run a range of classical and ML/DL algorithms here to obtain predictions
 - Must be fully differentiable
- Basic approach: Invert scatter model using track delta-angle to compute X₀
 - Highly biased
- Better: construct a task-specific summary statistic from X_0 predictions



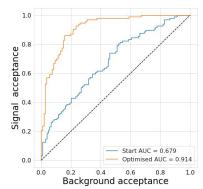
BASIC MODULES: OPTIMISATION

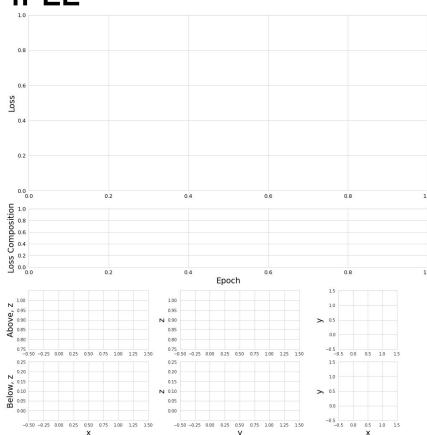
- Finally, compare prediction to target in a loss function
 - Suitable loss depends on the task
- The loss can also account for the cost of the detector
- Standard optimisers (SGD, Adam, etc.) can be used to update the detector parameters.



EXAMPLE

- Task is to infer presence of uranium block in lorry filled with scrap metal
 - Inference uses a dedicated summary statistic
 - The U block can be anywhere in the volume, so intuitively expect the detectors should be placed centrally in XY over the volume
- Detectors start in corner of volume and optimisation does indeed move them to cover the volume
- Optimised
 detector provides
 large
 improvement to
 ROC AUC





SUMMARY

- Measurement-aware detector-optimisation = challenging but rewarding task
 - Doesn't aim to replace detector experts; provide tools to make more informed design choices
 - Currently testing on a simplified case: muon tomography
- TomOpt indicates this is possible, and is under rapid development
 - Publications and open-source package this year

GETTING INVOLVED

- MODE involved in several other projects:
 - ECal, hybrid HCal, Cherenkov arrays, ...
 - Recent whitepaper <u>arXiv:2203.13818</u>
 - Open to new members (<u>contact</u>)
 - TomOpt also welcoming new contributors: giles.strong@outlook.com
- Second MODE workshop on differentiable programming
 - 12-16 September, Crete & online
 - https://indico.cern.ch/event/1145124/

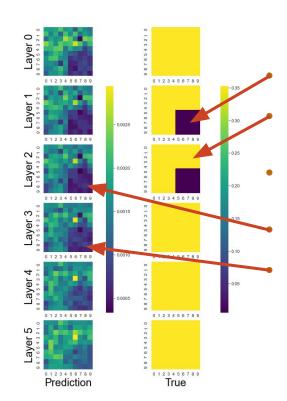
Overview of the sessions:

- Confirmed keynote speakers
 - Adam Paszke (Google Brain): DEX
- · Lectures and tutorials:
 - Differentiable Programming (Pietro Vischia, UCLouvain)
 - Hackathon (Giles Strong, INFN Padova)
- Applications in muon tomography
- Progress in Computer Science
- · Applications and requirements for particle physics
- Applications and requirements in astro-HEP
- · Applications and requirements for neutrino detectors
- Applications and requirements in nuclear physics experiments
- Discussion on the status and needs of the discipline (one parallel session per each of the other sessions)

BACKUPS

VOLUME INFERENCE: POCA

- Point of Closest Approach: Assign entirety of muon scattering to single point
 - Invert analytic scattering model to compute X₀
 - Average X₀ predictions in each voxel
- We know, though, that the muon scattering results from multiple interactions throughout the volume
 - Assigning the whole scattering to a single point inherently leads to underestimating the X_0
 - Can slightly improve by weighting muon predictions by their X₀ uncertainty
 - Can also allow muons to predict in multiple voxels according to their PoCA uncertainty

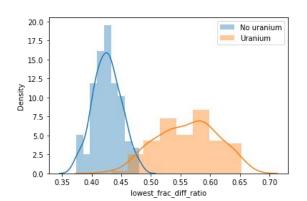


Block of lead $(X_0 = 0.005612m)$ Surrounded by beryllium $(X_0 = 0.3528m)$ **Predictions highly** biased to underestimate X₀ Lead block clearly visible but high z uncertainty in scatter location causes 'ghosting' above and below

VOLUME INFERENCE: SUMMARY STATISTIC

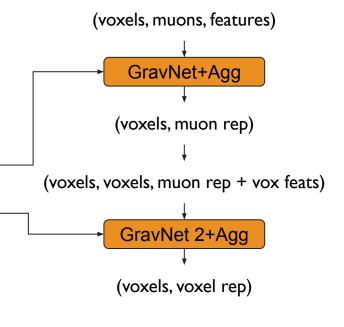
- In some cases, we don't care about predicting voxel X₀ values, but instead determining some higher-level property of the volume
 - E.g. is there uranium located anywhere in the volume?
- For this we can try to construct a summary statistic based on the X₀ predictions
- Statistics must be fully differentiable
 - Ideally, should also be invariant to scale
 X0 predictions, to mitigate PoCA bias

- E.g. for a uranium-block search, compare the mean of the lowest estimated to X_0 voxels to the mean of the rest
 - No block => small difference
 - Block => bimodal X₀ distribution => large difference



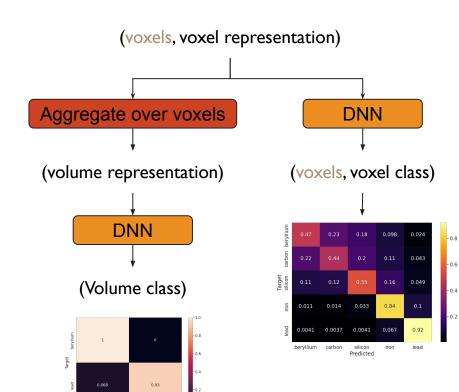
VOLUME INFERENCE: GNN

- Can use a deep learning approach
- Consider two-stage graph:
 - Each voxel has a graph built from muons
 - GNN+aggregation learns a representation of the muons specific to each voxel, by sharing features between muons
 - Each volume has a graph built from voxels
 - Second GNN+aggregation learns a representation of the voxels specific to each voxel, by sharing muon-representations between voxels.



VOLUME INFERENCE: GNN

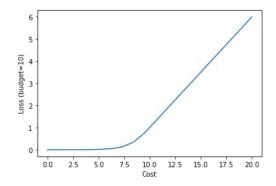
- At this point, we have a representation per voxel.
- We can transform these into X₀
 predictions (class/value) with a DNN
- We can easily aggregate over the voxels to produce a volume representation.
 - This can then be further transformed into the appropriate prediction shape
- Further details in my <u>IML talk</u>



LOSSES AND COST

- The loss of the system should contain two components:
 - The error on the predictions
 - E.g. MSE for voxel X₀, or cross-entropy for class predictions
 - The cost of the detectors
 - Cost component smoothly "turns on" near target budget
 - Heavily penalises over-budget detectors
 - Loss scaled according to error loss

$$\mathcal{L}_{\text{Error}} = \frac{1}{N_{\text{voxels}}} \sum_{i=1}^{N_{\text{voxels}}} \frac{\left(X_{0,i,\text{True}} - X_{0,i,\text{Pred.}}\right)^2}{w_i}$$



$$\mathcal{L} = \mathcal{L}_{Error} + \alpha \mathcal{L}_{Cost}$$