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TYPICAL LHC PROCESSING CHAIN

Particles
(real/simulated)

Detection Reconstruction Analysis Measurement
(real/simulated) cds.cern.ch/record/14060 CMS-FTR-18-019 CMS-FTR-18-019
73

cds.cern.ch/record/2120661/

Each stage optimised separately
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ISOLATED OPTIMISATION:
PROXY OBJECTIVES

Particles
(real/simulated)
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PAIRED OPTIMISATION:
ANALYSIS & MEASUREMENT

CMS Phase-2 3000 (14 TeV)
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®  Optimise analysis to directly optimise the | .
measurement: L ______ L]

®  DNN training accounts for systematic Data space Histogram model
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https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570
https://github.com/gradhep/neos

¢ CMS-FTR-18-019 projection study for
HL-LHC di-Higgs sensitivity

®  Analysis reused to test impact of new
CMS timing detector in CMS-TDR-020
¢  But:

®  No reco. algo. re-optimisation: changes
computed by simple rescaling
No analysis re-optimisation

Fixed test points

PAIRED OPTIMISATION:
DETECTOR & MEASUREMENT
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Signal increase (%)

Expected significance

Di-Higgs decay | BTL | BTL+ETL | No MTD MTD
bbbb 13 17 0.88 0.95
bbtt 21 29 1.3 1.6
bbyy 13 17 1.7 1.9
bbWW 0.53 0.58
bbZZ 0.38 0.42
Combined 24 2.7

35ps (above) 50ps (below) timing resolution

Expected significance
Di-Higgs decay | No MTD MTD
bbbb 0.88 0.94
bbtt 1.3 1.48
bbyy 1.7 1.83
bbWW 0.53 0.58
bbZZ 0.38 0.42
Combined 2.4 2.63

Tables: CMS-TDR-020


https://cds.cern.ch/record/2652549
https://cds.cern.ch/record/2667167?ln=en
https://cds.cern.ch/record/2667167?ln=en

MODE:WHAT IF...

®  What if just like measurement-aware

analysis-optimisation, we could go one Time 2 (Not to scale)
step further:

er
® Measurement-aware Eample 3 - We're in this
detector-optimisation | region
®  MODE mandate: .
®  Make simulation & analysis chain Parameters
differentiable
®  Specify physics goal as a loss function | Grid/random search

¢ Compute analytic dependence of
performance on detector parameters 2. Bayesian optimisation, Simulated annealing,

®  Design end-goal-optimal instruments genetic algorithm, particle swap

® Can it be achieved? optimisation, ...
¢ CERN LHC-style detectors = . ST .
huge-parameter space + complicated 3. Gradient-based optimisation: Newtonian,
simulation and analysis algorithms gradient descent, BFGS, ...

Let’s start with a simple use-case: muon
mography



Consider a volume with unknown
composition

¢  E.g. Shipping container, archeological site,
nuclear waste, industrial machinery

®  Want to infer properties of the volume:
¢  E.g. build a 3D map of elemental
composition
Cosmic muons scattered by volume
according to radiation-length (X [m]) of
elements in material

Measure muons above and below volume

Kinematic changes provide info on
material composition

TOMOGRAPHY VIA MULTIPLE SCATTERING

High X;
material

High X, = low Low X, = high
scattering scattering
X = average distance between

0
scatterings



PROBLEM

®  Each use-case likely to have a budget: E\ %

®  E.g fiscal, heat, power, spatial, imaging time

®  How should detectors be positioned to

best function in each use case subject to
constraints?

¢ Domain knowledge, experience, and Example |: Example 2:
intuition can help Muons Muons
®  But solutions likely to be based on measured measured less
heuristics and proxy objectives (e.g. precisely but precisely but
lowest uncertainty on muon-path angles) less efficiently more

efficiently



TOMOPT

®  Python package for differential optimisation of
muon-tomography detectors
° Modular design
° PyTorch provides autodiff

° Still underdevelopment; aim is an open-source package

®  First, express the entire inference chain as a
differentiable system

° We can now compute the analytical effects of detector
parameters (position, size, resolution, etc.) on system

e
outputs
®  Now express the desired task as a loss function
° E.g. error on X predictions, detector costs, time to
achieve desired resolution
®  We can now backpropagate the loss gradient to

detector parameters and optimise via gradient descent

° Just like a neural network

1181

Known
volumes Forwards pass Backwards pass

TomOpt contributors: Giles Strong, Tommaso Dorigo,Andrea Giammanco, Pietro Vischia, Jan Kieseler, Maxime Lagrange,
Federico Nardi, Haitham Zaraket, Max Lamparth, Federica Fanzago, Oleg Savchenko, Nitesh Sharma, Anna Bordignon



® Can generate muons by sampling
literature models [2015,2016]

®  Sampling can provide realistic spectra for
incoming angles and momenta

® Code designed to handle many muons at
once

AbsMuonGenerator

/ n muons
X.Y,p,0,¢

init

nerate_set(n)

BASIC MODULES: MUON GENERATION
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https://arxiv.org/abs/1509.06176
https://arxiv.org/abs/1606.06907

BASIC MODULES:VOLUME SPECIFICATION

A volume consists of Layers in z stacked
on top of each other

Passive layers scatter muons according to

material density (X)) T

Detectors record muon positions (hits)
with a certain resolution and efficiency

T~

AbsMuonGenerator

Simulation

AbsScatterBatch 2

AbsDetector

Inference

Evaluation
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DETECTOR MODELLING

Assume commercial detectors = fixed \

resolution, fixed efficiency, fixed cost per

m2

Optimise XYZ position and XY span

Both muons
recorded, but
with different
resolutions

But, muons either hit or miss detectors.

How can we make hits be differentiable
w.r.t detector parameters?

Instead, let resolution and efficiency be

distributed, e.g. Gaussian centred on panel,
with width set by panel span

®  The PDF at the muon position is now diff.
w.r.t panel position and span

Can further generalise by using Gaussian
ixture model

0 1 2

Plot: Max Lamparth



BASIC MODULES: SCATTER INFERENCE

® Next, need to fit tracks to the detector
hits

®  Fit uses analytic maximum likelihood
considering hits and their uncertainties

® Is fully differentiable w.r.t detector

AbsMuonGenerator

n muons
XY.p,0,¢

init

I
I
|
PassivelLayer ‘

]
I
1
AbsDetectorLayer ‘

init

‘ Volume

MuonBatch
= |

parameters

\

¢ Can then compute track parameters and
their uncertainties for each muon

®  Uncertainties computed via autograd

Also provides the Point of Closest
Approach between the tracks

I

AbsDetectorLoss
{ forward }— Loss

Evaluation




BASIC MODULES:VOLUME INFERENCE

Next, use muon track information to infer
properties of the volume
Can run a range of classical and ML/DL
algorithms here to obtain predictions

®  Must be fully differentiable

Basic approach: Invert scatter model using
track delta-angle to compute X

®  Highly biased
Better: construct a task-specific summary
statistic from X predictions

AbsMuonGenerator

.generate_set(n)

init

I I
I |
I I
AbsDetectorLayer ‘ PassivelLayer ‘

n muons ‘ Volume
X.y,p,0,¢
. forward |
init
MuonBatch
Simulation
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Track vars
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Batch II
predictions

Inference

AbsDetectorLoss
{ forward }—Loss

-

Evaluation



¢ Finally, compare prediction to target in a
loss function

®  Suitable loss depends on the task

®  The loss can also account for the cost of
the detector

¢ Standard optimisers (SGD,Adam, etc.) can

be used to update the detector
parameters.

n muons
XY.p,0,¢

AbsMuonGenerator

MuonBatch

.generate_set(n)

init

BASIC MODULES: OPTIMISATION
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EXAMPLE

08
¢ Task is to infer presence of uranium block in L
lorry filled with scrap metal §
®  Inference uses a dedicated summary statistic "
®  The U block can be anywhere in the volume, .
so intuitively expect the detectors should be
placed centrally in XY over the volume
. 0.0
®  Detectors start in corner of volume and o
. . . . 10
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SUMMARY

® Measurement-aware detector-optimisation = challenging but rewarding
task

® Doesn’t aim to replace detector experts; provide tools to make more informed
design choices

®  Currently testing on a simplified case: muon tomography

® TomOpt indicates this is possible, and is under rapid development

® Publications and open-source package this year



® MODE involved in several other projects:
®  ECal, hybrid HCal, Cherenkov arrays, ...
®  Recent whitepaper arXiv:2203.13818

¢  Open to new members (contact)

®  TomOpt also welcoming new
contributors: giles.strong@outlook.com

®  Second MODE workshop on differentiable
programming

®  12-16 September, Crete & online

https://indico.cern.ch/event/| 145124/

GETTING INVOLVED

Overview of the sessions:
- Confirmed keynote speakers
- Adam Paszke (Google Brain): DEX
- Lectures and tutorials:

- Differentiable Programming (Pietro Vischia, UCLouvain)
- Hackathon (Giles Strong, INFN Padova)

o Applications in muon tomography

® Progress in Computer Science

¢ Applications and requirements for particle physics

e Applications and requirements in astro-HEP

¢ Applications and requirements for neutrino detectors

¢ Applications and requirements in nuclear physics experiments

¢ Discussion on the status and needs of the discipline (one parallel session per each of the other
sessions)


https://arxiv.org/abs/2203.13818
https://mode-collaboration.github.io/#contact
mailto:giles.strong@outlook.com
https://indico.cern.ch/event/1145124/

BACKUPS




®  Point of Closest Approach:Assign entirety of
muon scattering to single point

®  Invert analytic scattering model to compute

X
0
®  Average X predictions in each voxel
®  We know, though, that the muon scattering
results from multiple interactions throughout
the volume

®  Assigning the whole scattering to a single
point inherently leads to underestimating the
X

Can slightly improve by weighting muon
predictions by their X uncertainty

Can also allow muons to predict in multiple
voxels according to their PoCA uncertainty

Layer 0
9876543210

0123456789

Layer 1
9876543210

0123456789

Layer 2
9876543210

0123456789

Layer 3
9876543210

0123456789

Layer 4
9876543210

0123456789

Layer 5
9876543210

0123456789

Prediction

9876543210 9876543210 fff 9876543210 9876543210 9876543210

9876543210

0123456789

0123456789

01234567849

0123456789

True

VOLUME INFERENCE: POCA

Block of lead
(X0=0.0056 [2m)

Surrounded by
beryllium
(X,=0.3528m)
Predictions highly
biased to
underestimate X

Lead block clearly
visible

but high z uncertainty
in scatter location

causes ‘ghosting’
above and below



In some cases, we don’t care about
predicting voxel X values, but instead
determining some higher-level property of
the volume

®  E.g.is there uranium located anywhere in

the volume?

For this we can try to construct a
summary statistic based on the X,
predictions

Statistics must be fully differentiable

Ideally, should also be invariant to scale
X0 predictions, to mitigate PoOCA bias

VOLUME INFERENCE: SUMMARY STATISTIC

E.g. for a uranium-block search, compare

the mean of the lowest estimated to X0
voxels to the mean of the rest

° No block => small difference

¢ Block => bimodal X, distribution => large
difference

0.0 No uranium

175 Uranium

15.0

125

035 040 045 050 055 060 065 070
lowest_frac_diff_ratio



VOLUME INFERENCE: GNN

(voxels, muons, features)

¢ Can use a deep learning approach

¢  Consider two-stage graph:

Each voxel has a graph built from muons
®  GNN-+aggregation learns a (voxels, muon rep)

representation of the muons specific I
to each voxel, by sharing features
between muons

(voxels, voxels, muon rep + vox feats)

Each volume has a graph built from voxe

®  Second GNN-+aggregation learns a
representation of the voxels specific
to each voxel, by sharing
muon-representations between
voxels.

(voxels, voxel rep)



VOLUME INFERENCE: GNN

(voxels, voxel representation)

¢ At this point, we have a representation per |
voxel. [ DNN ]
®  We can transform these into X0 l

predictions (class/value) with a DNN

0.11 2 = 0.049

_ (volume representation) (voxels, voxel class)
®  We can easily aggregate over the voxels to
produce a volume representation. l
®  This can then be further transformed into [ DNN } % ooz R
the appropriate prediction shape l g ey | .

Target

Further details in my [IML tall (Volume class)

0.011 0.014 0.033

iron

0.0041  0.0037  0.0041  0.067

lead

beryllium

on
o6 Predicted

Target



https://indico.cern.ch/event/1078970/timetable/?view=standard#42-two-level-graphs-for-muon-t

LOSSES AND COST

N, cels ’
1 VOXels (XO’Z‘,,True - XO,z',Pred.)

®  The loss of the system should contain two LBror = N,

oxels 5 wy
components:
®  The error on the predictions 3
° E.g. MSE for voxel Xo’ or 5
cross-entropy for class predictions 24
The cost of the detectors g3
¢ Cost component smoothly “turns on” §?
near target budget 1
° Heavily penalises over-budget 0
detectors OV'O 2,’5 5?0 7?5 10'.0 12'.5 15'.0 17'.5 20',0

Cost
®  Loss scaled according to error loss

L= EError + a'C’Cost



