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Computing	Derivatives
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Manual
• Error	prone

Numerical	Differentiation	(ND)
• Precision	errors
• High	computational	complexity
• Higher	order	problem	(formula	approximated	by	missing	higher	order	terms)

Symbolic	Differentiation	(SD)
• Only	works	on	single	mathematical	expressions	(no	control	flow)
• May	require	transcribing	result	back	into	code

Algorithmic	or	Automatic	Differentiation	(AD)
• Automatically	generate	a	C++	program	to	compute	the	derivative	of	a	given	function



Numerical	Differentiation
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• The	choice	of	h is	problem-dependent.
• Too	big	step	hmakes	the	approximation	too
poor
• Too	small	hmakes	the	floating	point	
round-off	error	too	big
• The	computational	complexity	is	O(n),	where	n	is	
the	number	of	parameters	– for	a	function	with	
100	parameters	we	need	101	evaluations

𝑑𝑓(𝑥)
𝑑𝑥

≈
𝑓 𝑥 − 𝑓 𝑥 + ℎ

ℎ



Automatic	Differentiation

”[AD]	is	a	set	of	techniques	to	evaluate	the	derivative	of	a	function	specified	by	a	
computer	program.	AD	exploits	the	fact	that	every	computer	program,	no	matter	
how	complicated,	executes	a	sequence	of	elementary	arithmetic	operations	
(addition,	subtraction,	multiplication,	division,	etc.)	and	elementary	functions	
(exp,	log,	sin,	cos,	etc.).”	[Wikipedia]

Known	as	algorithmic	differentiation,	autodiff,	algodiff,	computational	
differentiation.
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Automatic	and	Symbolic	Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥
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// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

𝑓 𝑥 = 𝑒+,
,,
- Symbolic	via	Wolfram	Alpha

Handcode Handcode

AD
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Figure	out	the
analytical	fn



Chain	Rule	&	AD
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𝑑𝑧
𝑑𝑥

=
𝑑𝑧
𝑑𝑦

.
𝑑𝑦
𝑑𝑥

Intuitively,	the	chain	rule	states	that	knowing	the	instantaneous	rate	of	change	of	
z relative	to	y and	that	of	y relative	to	x allows	one	to	calculate	the	instantaneous	
rate	of	change	of	z relative	to	x as	the	product	of	the	two	rates	of	change.	

“if	a	car	travels	twice	as	fast	as	a	bicycle	and	the	bicycle	is	four	times	as	fast	as	a	
walking	man,	then	the	car	travels	2	× 4	=	8	times	as	fast	as	the	man.”	G.	Simmons



AD.	Algorithm	Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

𝑑𝑦
𝑑𝑥

𝑑𝑧
𝑑𝑦

In	the	computational	graph	each	
node	is	a	variable	and	each	edge	is	
derivatives	between	adjacent	edges
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We	recursively	apply	the	rules	until	we	encounter	an	elementary	function	such	as	addition,	
subtraction,	multiplication,	division,	sin,	cos	or	exp.



AD.	Chain	Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy
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w1

x0

x1

zy

w0

w1
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x1
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AD	step-by-step.	Forward	Mode

dx0dx = {1, 0}
dx1dx = {0, 1}
y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1
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AD	step-by-step.	Reverse	Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1
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AD	Control	Flow

• Control	Flow	and	
Recursion	fall	naturally	in	
forward	mode.
• Extra	work	is	required	for	
reverse	mode	in	reverting	
the	loop	and	storing	the	
intermediaries.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}
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AD.	Cheap	Gradient	Principle

• The	computational	graph	has	common	subpaths which	can	be	precomputed
• If	a	function	has	a	single	input	parameter,	no	mater	how	many	output	
parameters,	forward	mode	AD	generates	a	derivative that	has	the	same	time	
complexity	as	the	original	function
• More	importantly,	if	a	function	has	a	single	output	parameter,	no	matter	how	
many	input parameters,	reverse	mode	AD	generates	derivative with	the	same	
time	complexity	as	the	original	function.
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Implementation	Techniques



Components	of	an	AD-Aware	System

• Core	AD	Transformation
How	do	we	generate	a	derivative?	Usually	is	a	transformation	pass	over	a	data	structure	representing	the	code.	
Challenge:	performance

• User	Interface/API
How	do	we	request	and	use	a	derivative?	Usually	is	a	trigger	for	the	AD	transformation.	Challenge:	cross-
translation	unit	support,	tool	interoperability.

• Framework
How	do	we	express	a	solution	apt	to	AD?	Usually	is	a	complex	system	that	enables	differentiable	programming,	
that	is	provides	users	with	facilities	to	solve	problems	end-to-end.	Challenge:	complexity,	tools	work	well	for	a	
single	domain.
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Core	AD	Transformation

AD	tools	can	be	categorized	by	how	much	work	is	done	before	program	execution:
• Tracing/taping/operator	overloading	– constructs	and	processes	the	computational	graph	at	
the	time	of	execution,	each	time	a	function	is	invoked.	
Records	the	linear	sequence	of	computation	operations	at	runtime	into	a	tape	(or	Wengert list).	The	control	flow	is	flattened	to	
produce	a	derivative.	A	typical	implementation	is	via	operator	overloading,	defining	a	special	floating	type	with	overloaded	
elementary	operations.	Algorithms	use	this	type	to	trigger	differentiation	by	calling	a	special	function.	There	are	numerous	C++ AD	
tools	based	on	tracing	including	ADOL-C,	CppAD,	Adept,	Zygote.jl,	Diffractor.jl and	JAX.

• Source	Transformation	– constructs	the	computation	graph	and	produces	a	derivative	
function	at	ahead	of	time.
More	compiler	optimizations	can	be	applied,	such	as	reorganizing	or	evaluating	simple	constant	expressions	at	compile	time	and	
common	subexpression	elimination.	Source	trans- formation	is	more	difficult	to	implement	as	it	requires	a	significant	investment	in	
developing	and	maintaining	a	language	parser.	Tapenade	is	an	example	for	a	source	transformation	tool	with	custom	parsers	for	C	
and	Fortran.	

• Compiler-based	Source	Transformation	– constructs	and	transforms	the	computation	graph	
as	part	of	the	translation	phase.
Historically,	toolmakers	made	trade	offs	between	ease	of	use,	performance	and	ease	to	integration.	AD	now	benefits	from	
better	language	support	to	avoid	such	trade	offs.	Recent	advancements	of	production	quality	compilers	like	Clang	allow	tools	
to	reuse	the	language	parsing	infrastructure.	ADIC,	Enzyme	and	CLAD	are	compiler-based	tools	using	source	transformation.
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AD	Frameworks

Other	systems	offer	AD-aware	environments	to	differentiate	subsets	of	a	
language	for	domain-specific	purposes:
• Halide	offers	AD-aware	environment	for	image	and	array	processing	in	C++
• JAX	is	also	an	AD	system	that	differentiates	a	sublanguage	of	Python	oriented	
towards	ML
• Dex aims	to	give	better	AD	asymptotic	and	parallelisation guarantees	than	JAX	
for	loops	with	indexing
• Swift	and	Julia	integrate	AD	deeply	into	the	language	itself	
• Tensorflow/PyTorch/Theano/…/
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Differentiable	Programming



Differentiable	Programming

“A	programming	paradigm	in	which	a	numeric	computer	program	can	be	
differentiated	throughout	via	automatic	differentiation.	This	allows	for	gradient	
based	optimization	of	parameters	in	the	program,	often	via	gradient	descent.”	
[Wikipedia]

23-May-2022 V.	Vassilev	- AD	beyond	Python	and	ML	- Analysis	Ecosystems	Workshop	II 18

• Deep	learning	drives	recent	advancements	in	automatic	differentiation
• AD	is	useful	also	in	bayesian inference,	uncertainty	quantification,	modeling,	simulation
• The	concept	of	AD	dates	back	from	dual	number	algebra	from	19th century
• In	1970’s	AD	was	used	to	estimate	roundoff errors
• In	the	ML	era	was	rebranded	as	backpropagation
• In	an	essay,	LeCun coined	the	term	Differentiable	Functional	Programming
• Now	there	are	efforts	in	enabling	differentiable	programming	in	computer	graphics	(differentiable	
rendering),	computer	vision,	physics	simulators	(fluid	dynamics),	…



Deep	Learning	&	Automatic	Differentiation
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Imagined	by	GAN,	
ThisPersonDoesNotExist.com

Medical	Imaging,	CNN,	A.	Esteva et	al,	A	guide	to	deep	learning	in	healthcare

Image	colorization Tesla	Autopilot,	tesla.com

Speech	Recognition



Backpropagation	As	Data	Flow	Optimization
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Input layer HL 1 Output layerHL 2

are inputs, input weights, activation 
function and learning rate of the 
neuron

Forward pass – make a prediction
Calculate Loss

Backpropagation – adjust the weights to minimize loss

The error propagates 
back, through updates of 
the subtracted gradient 
ratio from the weights.

Training pattern is fed, 
forward generating 
corresponding output

Error at output, the error 
between observed and 
desired state. Computed 
from the output y and seen 
desired output t.
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𝑎8
(9)

Backpropagation
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Gradient	Descent
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A	gradient	is	the	vector	of	values	of	the	function;	each	entry	
is	the	output	of	the	function’s	derivative	wrt a	parameter…

The	gradient	vector	can	be	interpreted	as	the	"direction	and	
rate	of	fastest	increase"

𝛻𝑓 𝑥1, … , 𝑥C =

𝜕𝑓
𝑥8
(𝑥1, … , 𝑥C)

.

.

.
𝜕𝑓
𝑥C
(𝑥1, … , 𝑥C)

Plot	credits:	https://ruder.io/optimizing-gradient-descent/



Uses	of	AD	Beyond	Python	&	ML
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Gradient	of	the	Sonic	Boom	objective	function	
on	the	skin	of	the	plane,	CFD,	Laurent	Hascoët
et	al.

Intensity	Modulated	Radiation	
Therapy,	Biomedicine,	Kyung-Wook
Jee et	al

Sensitivities	of	a	Global
Sea-Ice	Model,	Climate,	Jong	G.	Kim	et	al



AD	in	ROOT	and	Beyond
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RooFit &	AD	prototype,	G.	Singh	et	al. Floating	point	error	estimation&	AD,	G.	Singh	et	al.

ROOT	hist fitting	&	AD,	L.	Moneta	et	al.



AD	Community	&	Trends



AD	Community

• Relatively	small	and	well-connected	community
• autodiff.org – a	community	portal	which	is	mostly	kept	up-to-date
• Once	a	year	an	EuroAD workshop
• Next	year	there	will	be	a	major	AD	event	taking	place	in	ANL
• juliadiff.org – a	Julia	AD	community	which	captures	the	uprise of	AD	
infrastructure	in	Julia
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LLVM-Based	Source	Transformation	AD	Tools
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Clad.	Usage
// clang –fplugin=/.../libclad.so
// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }

double pow2_darg0(double); // to be filled by clad

int main() {
auto dfdx = clad::differentiate(pow2, 0);
// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = dfdx.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = dfdx.getFunctionPtr();
res = dfdxFnPtr(2);

// 3) Using direct function access through fwd declaration.
printf(pow2_darg0(3);
printf("The derivative code is: %s\n", dfdx.getCode());
return res;

}
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Tells the plugin to create 
pow2_darg0.

The programmer can use 
the derivative via a 
wrapper object, function 
pointer or forward 
declaration.



Enzyme.	Usage

// clang test.c -S -emit-llvm -o input.ll -O2 -fno-vectorize -fno-slp-vectorize -
fno-unroll-loops

#include <stdio.h>
extern double __enzyme_autodiff(void*, double);
double square(double x) {

return x * x;
}
double dsquare(double x) {

// This returns the derivative of square or 2 * x
return __enzyme_autodiff((void*) square, x);

}
int main() {

for(double i=1; i<5; i++)
printf("square(%f)=%f, dsquare(%f)=%f", i, square(i), i, dsquare(i));

}
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Conclusion
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Differentiable	Programming	a	programming	paradigm	which	relies	on	well	
developed	theory	and	technology.	It	can	enable	gradient	descent	optimizations	
and	make	our	systems	more	sensitive	or	resistant	to	particular	data	inputs.

I	personally	think	that	differentiable	programming	will	disrupt	science	modeling	
and	simulation.	

Can	HEP	re-ogranize its	software	to	benefit	from	this	paradigm	beyond	the	
canonical	use	of	ML?



Thank	you!



Supplementary	Slides



Optimal	Control
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Can	steer	a	process	
towards	a	reference	

trajectory	automatically?

Credit:	imgur.com Credit:	Reddit.com



Controlling	a	process
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The	goal	is	to	reach	zero	altitude	
with	zero	vertical	velocity	given	
tight	constraints	of	landing	area	

and	fuel.

Credit:	Official	SpaceX	Photos



Clang	
FrontendCode

Clang	
Backend BinaryClad

AST AST

Der.cxx

Code

gcc/msvc

double fsq(double x) {
return x * x;

}

FunctionDecl fsq 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator 'double' '*'
|-ImplicitCastExpr 'double' <LValueToRValue>
| `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
`-ImplicitCastExpr 'double' <LValueToRValue>
`-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

double f_darg0(double x) {
double _d_x = 1;
return _d_x * x + x * _d_x;

}

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>

|-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
| `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
| `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
| `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
`-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>

`-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
|-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
| |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
| `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'

|-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>

`-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'



Compiler	
FrontendCode Enzyme BinaryBackend

LLVM	IR LLVM	IR

pub fn fsq(x: i32) -> i32{
x * x;

}

define	dso_local double	
@_Z3fsqd(double	%0)		{
%2	=	fmul double	%0,	%0
ret	double	%2
}

define	dso_local double	
@_Z11grad_squared(double	%0)	{
%2	=	fadd fast	double	%0,	%0
ret	double	%2
}


