Physics at the Large Hadron Collider (LHC) and Beyond **CERN School of Computing** CSC 2022, Kraków, Poland **Joachim Mnich - CERN** September 5th, 2022

Reminder Update European Strategy for Particle Physics

CERN Council updated the European Strategy for Particle Physics in June 2020

Scientific recommendations

- Full exploitation of the LHC and HL-LHC
- Highest-priority next collider: e+e- Higgs factory
- Increased R&D on accelerator technologies
- Investigation of the technical and financial feasibility of a future ≥ 100 TeV hadron collider
- Long-baseline neutrino projects in US and Japan
- High-impact scientific diversity programme complementary to high-energy colliders
- R&D on detector and computing
- Theory

Other high priority items:

- Exploit synergies with neighboring field, in particular nuclear and astroparticle physics
- Mitigate environmental impact of particle physics
- Invest in next generation of researchers
- Support knowledge and technology transfer
- Public engagement, education and communication

This strategy provides guidelines to CERN and the entire field for the coming years

10th Anniversary of Higgs Boson Discovery

On 4 July 2022, CERN marks 10 years since the <u>ATLAS</u> and <u>CMS</u> experiments announced the discovery of the <u>Higgs boson</u>

Centrepiece was a full-day scientific symposium in CERN's main auditorium celebrating the discovery, give an overview of what's been learned since then, and take a look forward at what's still to come https://indico.cern.ch/event/1135177/

Example: measurement of the Higgs couplings to fundamental particles

ATLAS result based on the full data set (Run 2)

Key prediction of the Standard Model:

☐ Higgs coupling to particles is proportional to their mass

Impressive verification with an accuracy often better than 10%

Coupling measurements ($B_i = B_u = 0$)

The LHC Scientific Programme

CERN on July 5th

Upgrades of the Detectors

- □ All 4 LHC experiments improved with new detectors, electronics, DAQ systems
- ☐ A few examples:

LHCb Scintillating Fibre Tracker

LHC Programme

- □ 2022: Re-start LHC again (Run 3)
 - Over the last years significant improvements on accelerator (incl. HL-LHC preparations) and detectors
 - ☐ Goal for Run 3 is to approx. double the luminosity for ATLAS and CMS
 - Even more potential for ALICE and LHCb due to increased rate capabilities
- ☐ HL-LHC
 - Long shutdown 2026 28 to upgrade accelerator and detectors (ATLAS & CMS)
 - Will increase luminosity by factors 5 to 7
- ☐ Final goal is > 3000 fb⁻¹
 - About 20 times the luminosity collected until today
- ☐ ALICE and LHCb upgrade planned in the 2030ies

Preliminary HL-LHC schedule

The High-Luminosity LHC

HL-LHC will provide $3000 - 4000 \text{ fb}^{-1}$ by $\approx 2040 \text{ i.e.} \approx 20 \text{ times the currently available data}$

- Will allow measurement Higgs couplings to the percent-level incl. establishing Higgs self coupling
- ☐ Significantly extend reach for new physics
- ☐ Start operation in 2029

2 examples for illustration

CERN-2019-007

Challenges for the Detectors

 ■ Example: event pile-up in 2018 typically 20 - 40 pp collisions per bunch crossing

□ At the HL-LHC: 150 - 200 pp collisions per bunch crossing expected

05.09.2022

ATLAS Phase II Upgrades

The full scientific exploitation of the **HL-LHC** requires major upgrades of the detectors, mainly for ATLAS and CMS

- ☐ Higher granularity
- ☐ Better resolution in space and time
- → Phase II upgrades

Upgraded Trigger and Data Acquisition system

I 0 at 1 MHz Improved High-Level Trigger (100 kHz full-scan tracking)

Electronics Upgrades

LAr Calorimeter Tile Calorimeter Muon system

High Granularity Timing Detector (HGTD)

Forward region

Low-Gain Avalanche Detectors (LGAD)

New Muon Chambers

Inner barrel region

New Inner Tracking Detector (ITk)

Pixel and Strip detectors

All silicon, up to $|\eta| = 4$

CMS Phase II Upgrades

L1-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing
 for e/y at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- · 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/002706512

Bunch-by-bunch luminosity measurement:
 1% offline, 2% online

13

Tracker

https://cds.cern.ch/record/2272264

- · Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

https://cds.cern.ch/record/2667167

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Future Circular Collider (FCC): Feasibility Study

European Strategy for Particle Physics:

- An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a protonproton collider at the highest achievable energy.
- "Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.
- Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

CERN has launched the FCC feasibility study to address these recommendations

05.09.2022

The FCC integrated program COLLIDER inspired by successful LEP – LHC programs at CERN

comprehensive long-term program maximizing physics opportunities

M. Benedikt April 2022

Technical site

Technical site

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
 - stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

2020 - 2040

2045 - 2060

2065 - 2090

J. Mnich | CSC 2022

FCC-ee Design Concept

Based on lessons and techniques from past colliders (last 40 years)

- □ B-factories: KEKB & PEP-II:
 - □ double-ring lepton colliders,
 - high beam currents,
 - □ top-up injection
- □ DAFNE: crab waist, double ring
- □ S-KEKB: low by*, crab waist
- □ LEP: high energy, SR effects
- □ VEPP-4M, LEP: precision E calibration
- □ KEKB: e⁺ source
- □ HERA, LEP, RHIC: spin gymnastics

Combining successful ingredients of several recent colliders → highest luminosities & energies

FCC-hh: Highest Collision Energies

Key challenges:

- □ Order of magnitude performance increase in both energy & luminosity
- □ 100 TeV cm collision energy (vs 14 TeV for LHC)
- 20 ab⁻¹ per experiment collected over 25 years of operation (vs 3 ab⁻¹ for LHC)
- ☐ Similar performance increase as from Tevatron to LHC
- ☐ Key technology: high-field magnets

CERN Diversity Programme

~20 projects other than LHC with > 1200 physicists

AD: Antiproton Decelerator for antimatter studies

AWAKE: proton-induced plasma wakefield

acceleration

CAST, OSQAR: axions

CLOUD: impact of cosmic rays on aeorosols

and clouds → implications on climate

COMPASS: hadron structure and spectroscopy

ISOLDE: radioactive nuclei facility

LHC

NA61/Shine: ions and neutrino targets

NA62: rare kaon decays

NA63: radiation processes in strong EM fields

NA64: search for dark photons

Neutrino Platform: v detector R&D for

experiments in US, Japan

n-TOF: n-induced cross-sections

UA9: crystal collimation

05.09.2022 J. Mnich | CSC 2022

- Four technical areas:
 - Quantum Computing And Algorithms
 - Quantum Theory and Simulation
 - Quantum Sensing, Metrology and Materials
 - Quantum Communication and **Networks**
- Collaborations being established in the Member States, US (Fermilab, Oak Ridge) and Japan (Tokyo – ICEPP)
- Signed Quantum Hub Agreement with **IBM**

