
Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Sometimes you need to think big thoughts
Not all performance problems will be solved with an incremental approach

• “Do we have to do it this way?”
• “Is there a better way to do this?”

• “Do I have to do this at all?”

1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Traditional example: Sorting a new deck of cards

Method 1: Pattern recognition
• There are a finite number of possible arrangements
• Find which one you have, and then reorder
• 52! = 4x1066 so will need about 2*4x1066/2 comparisons

Method 2: Bubble sort
• Scan through, finding the smallest number
• Then repeat, scanning through the N-1 that’s left
• Cost is O(N2) “sum of numbers from 1 to N” = 52*(52+1)/2 = 1.4x103

Method 3: Better sorts - Shell sort, syncsort, split sort, ...
• Even for arbitrary data, better sort algorithms exist
• O(N log2N) = k * 52 * 5.7 = k * 300, where “k” is time per operation

• For N large, important gain regardless of k
• As ideas improve, k has come down from 5 to about 1.2 => 360

Method 4: Bin sort (“Solitaire sort”)
• Use knowledge that there are 52 items with unique known labels
• Throw each card into the right bin with 52 calculations: O(N)

Method 5: New decks are already sorted (No operations!)
2

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.so1co78qtmfd

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Telling pions from kaons via Cherenkov light

Pions & Kaons have similar interactions in matter, differ in mass

Particles moving faster than light in a
medium (glass, water) emit light

• Angle is related to velocity
• Light forms a cone

Focus it onto a plane, and you get a circle:

3

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Radius of the reconstructed circle give particle type:

4

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How to make this fit?

Space inside a detector is very tight, and the ring needs space to form
BaBar used “DIRC” geometry of multiple bars:

5

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Good news: It fits!

Bad news: Rings get messy due to ambiguities in bouncing

6

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Simple event with five charged particles:

7

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Why is this hard?

Brute-force circle-finding is an O(N4) problem
• Basic algorithm: Are these four points consistent with a ‘circle’?

Important to understand how cost grows with input size:

O(N)
O(N^2)
O(N^3)
O(N^4)

8

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.so1co78qtmfd

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

0

5

10

15

20

25

30

Realistic solution for DIRC? (Avoiding O(N4))

Use what you know:
• Have track trajectories, know position and angle in DIRC bars
• All photons from a single track will have the same angle w.r.t. track

No reason to expect that for photons from other tracks

For each track, plot angle between track and every photon - O(N)
• Don’t do pattern recognition with individual photons
• Instead, look for overall pattern you already know is present

Not perfect, but optimal?
9

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

“But each operation is so much slower…”

How do I compare a “fast” O(N4) algorithm with a slow O(N)?

Many realistic problems deal with lots of data items
• Sharp coding is unlikely to save you a factor of 502 per calculation

N
N^2/10
N^3/100
N^4/1000

10

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

0

5

10

15

20

25

30

Where else do we see this pattern?

What do we do when we can’t figure out the exact answer?

11

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

12

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

13

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

14

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Big things are different from small things

15

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

The life time of HEP software

Software is a long-term commitment

R. Brun

Many releases of the software are needed over its lifetime
to fix bugs, add new features, support new platforms etc

16

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How do we cope?

We try to find a way of working that leads to success
We create a “process” for building systems
We devise methods of communicating and record keeping: “models”
We use the best tools & methods we can lay our hands on

And we use a lot of optimism!

17

been tough

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Can’t technology save us?

We’ve built a series of ever-larger tools to handle large code projects:
Git for controlling and versioning code
Tools for building “releases” of systems
Tools for “configuration management”

But we struggle against three forces:
•We’re always building bigger & more difficult systems
•We’re always building bigger & more difficult collaborations
•And we’re the same old people

Net effect: We’re always pushing the boundary of what we can do

Stupidity got us into this mess; why can’t it get us out? - Will Rogers

18

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How we got here:

First, you just wrote a big program
But soon it was so big you wanted help
So you broke it into pieces/files/modules
But how do you share work on those?

19

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Version Control Systems (Hg, SVN, Git)

As systems & collaborations grow, efficiency goes down
“Version” idea: Track changes from one version to next

Anybody can get a specific set of source code file versions

Big advantage: checkout is not exclusive
• More than one developer can have the same file checked out
• Developers can control their own use of the code for read, write
• Changes can come from multiple sources
• Tool handles (most) of the conflict resolution

20

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.qezvgenmz80j

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Everybody is sharing a single repository
Every commit is immediately visible to everybody else

Development stands on shifting sand
 Detailed records, but little understanding

Workarounds!

 External record keeping tools

 Package Coordinators

Scaling is still an issue

21

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.wv86sfapdcmf

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Issue with this arise at large & small level

At the level of developers and contributions, needed way to manage this
• Both tools and procedures

We’ll be discussing & exercising git as typical tool
Individual collaborations have their own ways of sharing info

At the collaboration leveled, need procedures to ensure it all works
• “Nightly builds”

Now common in HEP - Gives early feedback on consistency problems

• “Continuous Integration”, including automated testing
Only works when people actually integrate early and often

• Reduces problems, but integration is still a lot of work

22

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ffin4fockth2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

When Boeing wanted to design the 747, they had two choices:

1. Hire “SuperEngineer”, who could do it alone

2. Hire 7,200 engineers and organize them to cooperate

Which did they choose?

Why?

What can we learn from this?

23

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

24

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

At first, Git looks like a simple file system…

You bring out a copy, work on it, and commit
Git repository contains all that history

“Scratchpad” idea lets you control what you commit: Shaping the story

25

More

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/
https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing to the Main Branch

26

 Main

 Main

 Main

 Main

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Main

27

WorkBranch

 Main

 Main

WorkBranch

 Main

WorkBranch

“Fast forward” form of merge

A65F46 64532AB841F0895EC7 3A6D79

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Main

28

WorkBranch

 Main

WorkBranch

 Main

WorkBranch

 Main

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Committing on a Branch and Merging to Main

29

WorkBranch

 Main

 Main

 Main
WorkBranch

WorkBranch

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Merging

Because Git focuses on commits, not on file versions, powerful merging

30

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Multiple repositories with easy transfer of commits between

31

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

32

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

33

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

More than just mirroring

34

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2
Branches are key

Ti
m
e

releasedevelop

Tag

0.1

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323
License: Creative Commons

hotfixes

Severe bug
fixed for

production:
hotfix 0.2

Tag

0.2

• Pays off for bug fix!

release
branches

Start of
release

branch for
1.0

• New branch holds release

35

• Develop on a separate branch

feature
branches

Feature
for future
release

• Future Big Feature on branch

Major
feature for

next release
• And another one

• And another one for || work

Incorporate
bug fix in
develop

• Git merge to get fix across
• Feature done, merges in

Only bug
fixes!

• and its inevitable fixes

Tag

1.0

• until merge and release main.

Bug fixes from

rel. branch
may be

continuously
merged back
into develop

• Meanwhile, work proceeds

From this point on,
“next release”

means the release
after 1.0

Start of
release

branch for
2.0

• And the process repeats

Keys: cheap branches,
 reliable merges

Gives understandable story?

http://nvie.com/archives/323
http://creativecommons.org/licenses/by-sa/3.0/nl/deed.en_GB

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Using all that history:

My feature broke between 0.1 and 1.0
Which commit broke it?
“git bisect” works through the graph

 Was it in 0.2? No?
Was it in merge before the release branch? Yes
….

I found a bug in a specific commit SHA
Which releases does it affect?
What’s not affected?
 “git diff tag1.0…SHA” to see if included

 “git log” and “git revlog” explore history
Graphical representations can help a lot

gitk, gitg tools

Complex! Linear history in repository would resolve these much easier

36

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Git Rebase: An Editor for the Story

37

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

Deleting only gets you so far

“Squashing” commits

Fast-forward merge

“Rebase”
operation

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Git Rebase: An Editor for the Story

38

Finished difficult development task,
after several dead ends, lots of little
bits of progress & dead ends

More

“Rebase” operation

Deleting only gets you so far

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.ignakwmoeybr

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Using rebase and fast-forward merges:

Linear history:

39

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How do you give 6,000 people access to a central repository?
Use a distributed repository and “pull requests”

Git-based developers have a full local repository
Commits have full context

“Push” moves all that to target

A “pull request” sends all that to somebody
at the target, who can accept or not

When accepted, the merge is completed & both repositories in sync
(Pull requests rarely rejected outright - usually it’s “fix these things and
resend”)

Strong tools exist to make pull requests easy: CI test results, etc automated

You want me to trust how many people?

40

More

Mine Group

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.6lxps8eprodp

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Bob is working on his laptop, and commits another change locally:

41

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Bob is working on his laptop, and commits another change locally:

He’s ready for that work to be reviewed, and wants to move it to a
repository that’s always online:

42

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

43

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

44

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Life Cycle of a Pull Request

Once created:
Continuous integration tests are run

Reviews happen
Merge checks are done

And finally, somebody with authorization can click this:

to complete the merge onto the desired branch in the main repository.

45

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

How do you use this all?

Individually:
Use it to work independently

Both of others, and of yourself!

Collaborate on intermediate results
Clean branches easy to share: “Try bobj/FixIssue10343”

Shape your work result to make it understandable
Comments, squashing, comments, rebasing as tools

Integrate early and often!
Pull “main” and make sure work is still OK

For a collaboration project:
Help people work at the scales they need to

Individually, in small groups, large groups, …

Control how code is added/updated
Shaping contents of common development, releases

Make the contents understandable
Tags, known branching / linear history

46

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Series summary

Software engineering is the art of building complex computer systems

It’s ideas and techniques spring from our need to handle size & complexity

As you do your own work & develop your own skills, consider:
• How your effort effects or contributes to things 10X, 100X, 1000X larger
• How you’ll do things different/better when it’s your problem

47

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 2

Test Frameworks

Performance Profiling

Memory Issues

Code Management

Instructions to get started on Indigo (Tools & Techniques E1)

https://indico.cern.ch/event/1125271/contributions/4723248/

You’ll work in pairs. Try to find somebody with complementary skills!

Learn about each topic, spend more time on the ones that interest you.

Speed is not the issue: no reward for first done, no complaint about last.

Think about what you’re doing: There are larger lessons to be found!

Exercises on Tuesday

48

More

https://indico.cern.ch/event/1125271/contributions/4723248/
https://indico.cern.ch/event/1125271/contributions/4723248/

