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Lecture IV

Patterns for Parallel Software Development
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Outline of This Lecture

The Goals:

1) Understand a few basic patterns of sequential algorithms
2) Know how to map these onto parallel concepts

3) Understand how these scale
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What is a Pattern? e

Software design pattern
General, reusable solution to a commonly
occurring problem in a given context in
software design

Parallel pattern

Recurring combination of task distribution
and data access that solves a specific
problem in parallel algorithm design
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= Before starting with parallelism let’s look at what we know about the serial case

=  We will have a look at the following ones:
= Sequence
= Selection

= |teration

= These are all simple concepts, but the vocabulary is important!
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= A sequence is an ordered list of tasks/commands
The exact dependencies of the commands
do not matter

= Side-effects do not matter

= There is only one task executed at a time
= The tasks are executed as defined

The compiler and the CPU may re-order instructions if they
think it optimises runtime

jeeed
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» |n a selection

= The commands a and b depend on

decision of ¢
True False

I B

= Always only one of the two sides is
being executed

The «if» statement

The CPU may apply speculative execution, but it always
takes care of sanity
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= |n an iteration a certain function f is executed as long as a
certain condition c is true.

= This is the famous while loop

while ( ¢ ) {
£(); True False
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= How do condition and function depend on each other?
= There must be some dependency, otherwise it is an infinite loop

= Sometimes the dependency is trivial and can be re-formulated as a
for loop (a.k.a. counted loop)

i=0;

while (i < n ) { for (i = 0; i < n; ++i ) {
£(); — | £();
++1i; }

}

= In serial code this is mainly just syntactic sugar

= However, it gives some nice hints to the compiler
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= The serial iteration pattern might seem trivially parallelisable but...
= Beware of dependencies!

= Do multiple iterations depend on each other?

= Loop-carried dependency

= Different kinds of dependencies translate to different parallelisation possibilities

159 CERN School of Computing 2022



SW Design in the Many-Cores Era

160

lteration IV

School ©f Computing

void doIt( int n, double x[], int a[],

for (int i =
X[ a[i] ] =

0;
%[ a[i]

i< n; ++i) {
] * x[ b[i]
}

int b[],

1 * x[ c[i]

int c[]

17

)

{

Any chance of parallelising this?

What are the obstacles?

= j.e. what are the dependencies?
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Modern Syntax: An Interlude

C++ is ever improving with new standards (C++11, C++14, C++17, C++20, C++23)

Two (not so) recent additions are: @
" auto var = retrieveSomeObject(); L
= for (auto & element : myCollection) i

auto :do not specify the type, the compiler finds it out at compile time. Useful to avoid tedious
typing also detrimental for readability of the code!

Range-based loops: build a loop with a concise syntax!

Take advantage of this! ©
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Parallel Patterns

= After reminding ourselves about serial control patterns, let’'s have a look at a few parallel
patterns

= Can help you structure your parallel program

= The serial iteration pattern has many parallel offsprings
= Map
= Partition
= Reduce

= Scan

= Other useful patterns
= Pipeline
= Superscalar Sequences
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= The map is the most trivial parallel extension of the serial
iteration

= Apply the same function £ on multiple elements of a
collection in parallel

= We hide the loop!

= Requirements:

= No loop-carried dependency
= Function £ is pure, i.e. without side-effects

= Scaling: n (linear w.r.t. the number of elements in the
collection)
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= Libraries like Intel's Threading Building Blocks (TBB) provide already all ingredients for
standard patterns like map.

= |tis called parallel for: Spawns one task for each element from 0 to N-1

tbb::parallel for(
// Define iteration space
Ol Nl
// Apply function f
[&](size_ t 1) {

f(data[i]);

}

)i
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Lambda expressions are anonymous functions and can be assigned to the std: : function type
They can be passed as parameters as if they were regular variables

When defined, they can capture a specific set of variables ( or all )

Once they have been defined, they can be passed to functions like std: : for_each or TBB's parallel for

std::function< double (double, double) >
f =[] 1 (double a, double b) { return a + b; };
std::cout << £ ( 23.0, 24.0 );
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= Using the C++ auto keyword simplifies the syntax, but does not change the behavior
auto £ = [ ] ( double a, double b ) { return a + b; };

= Capture the variable globalOffset as a reference and use it in the computation
auto £ = [ &globalOffset ] ( double a, double b )
{ return a + b + globalOffset; };

= Capture all variables defined in the current scope by value

auto £ = [ = ] ( double a, double b )
{ return a + b + globalOffset; };

= Can you think of the difference in behavior when using capture-by-value instead of capture-by-
reference?
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= The map pattern helps when parallelising on collections

= However, sometimes it is useful to treat multiple items together
= E.g. for the combination of multithreading and vectorisation

= Multi-level parallelism!
= Partitioning allows for a custom split of the collection into subcollections or chunks

= A variant of partitioning is called geometric decomposition
= Update of a partition needs data from other partitions
= Might require synchronisation
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Map-Partition with TBB S o

=  We can still use parallel for, but we can run it in chunks using blocked range

=  Auto-partitioning applied by TBB

tbb::parallel for(
// define iteration space
tbb::blocked range<size t>(0, N),
// apply function to a chunk
[=](const blocked range<size t> & r) {
for (auto i = r.begin(); i != r.end(); ++1i)
f(data[i]);

);
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= A reduction combines the elements of a collection into a single result using a combiner
function

= Requirements:
= No loop-carried dependency apart from the combined result

=  Combiner function is associative
= Be careful with floating-point operations!

= Having a commutative function is beneficial
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Result

= Speedup: n/logn
= Counters are a typical example for reduction input

= Before coming to a real example, let’'s have a look at modern C++ again...
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TBB and parallel reduce:

School ©f Computing

int sum = tbb::parallel reduce(

// The input array, which will be partitioned automatically
tbb::blocked range<int*>(array, array + size),
// Identity value for the sum reduction
0,
// Lambda that returns the sum of all elements in a partition
[1(const tbb::blocked range<int*> & r, int v) {

for (auto i = r.begin(); i != r.end(); ++i) v += *i;

return v;

b

// Reduction operation that combines the per-partition sums
[1(int x, int y) { return x + y; }
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Map and Reduce Combined

Usually map and reduce go hand in hand:
= A function being applied to single elements

= The results are then passed to a combiner function

A concrete example:
= Count the number of times a certain word appears in a text

Solution:
= Partition: Split the text in equally-sized chunks
= Map: Do the word count
= Reduce: Add the counts

Various map/reduce frameworks at your disposal!
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The Power of Map-Reduce

The combination of the Map and Reduce patterns has been extremely successful in massive
distributed data processing

A little bit of history...
= 2004: Google publishes the MapReduce paper

= 2006: Hadoop is released, inspired by MR

Nowadays, MR is behind every click on popular web sites or services

= Facebook, Twitter, Yahoo, ...

= Analytics to predict user interests, target ads, show recommendations, ... and many more
= Robust, fault tolerant

= Scale to crunch large datasets
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Map-Reduce and Functional Chains "=

= Map and reduce were born in functional programming
= Declare what you want to do, not how

= No side-effects

= High-level view, based on two main concepts:
= Data is organised in collections of elements
= We apply functions to those elements, possibly in a chain

histo = events.map(fillHist).reduce(mergeHist)

K

= |mplemented by frameworks like Spark and ROOT’s RDataFrame SpQ

= No need to manage parallelisation, just think about opportunities for parallelism!
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Map-Reduce and Functional Chains Il

= |Implementation responsible for producing a parallel execution plan
= Where are the data?
= What resources are available?

= What optimisations can be applied?

Events Events Histogram Final
(partitions) (partitions) Histogram
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Scan o I

= Scan is another offspring of the iteration pattern with more relaxed boundary conditions

= Requirements:
= Result of element n depends on n-1

= Successor function is associative
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= Scan is another offspring of the iteration pattern with more relaxed boundary conditions

= Requirements:
= Result of element n depends on n-1

= Successor function is associative
= Already a non-trivial implementation necessary

= Speedup: very limited
= Atmostn/logn

= Number of instructions required is worse (up to x2)
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* The pipeline pattern is the good old assembly line
= Work split into a sequence of operations with a producer-
consumer relationship

= Work items go from one stage to the next

= The order of steps is important

= Different operations on different items are independent

= Stages can be serial or parallel (accept one or more items

y

simultaneously) -
= More complex cases can have a directed acyclic graph instead of #

a purely linear setup

197

-

= The speedup of a pipeline is given by Amdahl’ s Law D

180 CERN School of Computing 2022



SW Design in the Many-Cores Era

181

Pipeline li

Intel’s TBB offers a feature for implementing a pipeline too:

parallel pipeline( max_number of live tokens,

)7

make filter<void,I1> (mode0O, a) &
make filter<Il,I2> (model, b) &
make filter<I2,void> (mode2, c)

e

~

parallel
serial in order
serial out of order
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Pipeline lll

float RootMeanSquare( float* first, float* last, int n ) {
float sum = 0;
parallel pipeline(16,
make filter<void,float*>(
filter::serial in order,
[&](flow control& fc) => float* {

if ( first < last ) { Step 1 handles
return first++; <
} else { the data stream

fc.stop();
return nullptr;

}

}

) &

make filter<float*,float>( P Step 2 can run
filter::parallel, - in parallel with

* * *(* . .

) ;](float p) { return (*p)*(*p); } itself

make filter<float,void>( )
filter::serial in order, < Step 3 is not
[&] (float x) { sum += x; } thread-safe

)
)i
return sqrt(sum / n);

}
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Superscalar Sequences

=  Split work into several tasks and define their data
dependencies |

= | et atask scheduler do the rest

= Pattern followed by concurrent HEP data processing
frameworks L

Time

—

=  Assumption of this model is that there are no hidden data dependencies and no
side-effects unknown to the scheduler

= Let's have a look at these assumptions...
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= TBB flow graph interface:

tbb::flow: :graph g;

tbb::flow::function node< int, int > n( g, unlimited, []( int v ) -> int {
// do something
return v;

} )i

tbb::flow::function node< int, int > m( g, 1, []( int v ) -> int {
// do something else
return v;

} )i

tbb::flow: :make_edge( n, m );

n.try put( 1 ); n.try put( 2 ); // try put( ... )
g.wait for all();
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Hidden Data Dependencies

std::atomic_bool doit(false); « Thread-safe
boolean variable

void taskl() {

if (doit)) {
eventstore.put (fancystuff);
}

}
void task2() {

doit = true;

}

Content of the event store depends on the execution order
Thread-safe objects don’t help at all

It is a pure logic flaw
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Side Effects

Triggered when a computation modifies some shared state outside of its local environment
= e.g. aglobal variable

They are a major obstacle for parallelism

= Watch out for them when applying your parallel patterns!
In general, every non thread-safe resource is an issue

Remember from previous lectures:
= Side-effect free resources are the ideal solution

= |If not possible, tell the scheduler about what you need and “reserve” or copy what is
unsafe
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Take-Away Messages

There exist design patterns to help you parallelising your programs

= Check if you can reuse them!

They all have their origin in serial patterns, but add constraints to the operations
allowed

Map-Reduce is a very successful pattern, used every day for distributed
processing of large amounts of data

High-level interfaces like C++ lambdas, the TBB library or the Spark framework
make it easier for you to get started with these patterns
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