ERN &
School of Computing

SW Design in the Many-Cores Era @
C

«

'lmff Il \. (;}1 ‘
““” }\ '”;‘la%/j | P

Lecture IV

Patterns for Parallel Software Development

151 CERN School of Computing 2022

152

SW Design in the Many-Cores Era

Outline of This Lecture

The Goals:

1) Understand a few basic patterns of sequential algorithms
2) Know how to map these onto parallel concepts

3) Understand how these scale

CERN School of Computing 2022

CER!
Scho:

X

ol of Computing

SW Design in the Many-Cores Era @
C

What is a Pattern? e

Software design pattern
General, reusable solution to a commonly
occurring problem in a given context in
software design

Parallel pattern

Recurring combination of task distribution
and data access that solves a specific
problem in parallel algorithm design

153 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Serial Control Flow Patterns oot Computis

= Before starting with parallelism let’s look at what we know about the serial case

= We will have a look at the following ones:
= Sequence
= Selection

= |teration

= These are all simple concepts, but the vocabulary is important!

154 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

S e q u e n c e School of Computing

= A sequence is an ordered list of tasks/commands
The exact dependencies of the commands
do not matter

= Side-effects do not matter

= There is only one task executed at a time
= The tasks are executed as defined

The compiler and the CPU may re-order instructions if they
think it optimises runtime

jeeed

155 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

S e I e ct i o n School of Computing

» |n a selection

= The commands a and b depend on

decision of ¢
True False

I B

= Always only one of the two sides is
being executed

The «if» statement

The CPU may apply speculative execution, but it always
takes care of sanity

156 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Ite rat i O n School of Computing

= |n an iteration a certain function f is executed as long as a
certain condition c is true.

= This is the famous while loop

while (¢) {
£(); True False

157 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Iteration ||

= How do condition and function depend on each other?
= There must be some dependency, otherwise it is an infinite loop

= Sometimes the dependency is trivial and can be re-formulated as a
for loop (a.k.a. counted loop)

i=0;

while (i < n) { for (i = 0; i < n; ++i) {
£(); — | £();
++1i; }

}

= In serial code this is mainly just syntactic sugar

= However, it gives some nice hints to the compiler

158 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Iteration lli

= The serial iteration pattern might seem trivially parallelisable but...
= Beware of dependencies!

= Do multiple iterations depend on each other?

= Loop-carried dependency

= Different kinds of dependencies translate to different parallelisation possibilities

159 CERN School of Computing 2022

SW Design in the Many-Cores Era

160

lteration IV

School ©f Computing

void doIt(int n, double x[], int a[],

for (int i =
X[a[i]] =

0;
%[a[i]

i< n; ++i) {
] * x[b[i]
}

int b[],

1 * x[c[i]

int c[]

17

)

{

Any chance of parallelising this?

What are the obstacles?

= j.e. what are the dependencies?

CERN School of Computing 2022

161

SW Design in the Many-Cores Era @
CERN

Modern Syntax: An Interlude

C++ is ever improving with new standards (C++11, C++14, C++17, C++20, C++23)

Two (not so) recent additions are: @
" auto var = retrieveSomeObject(); L
= for (auto & element : myCollection) i

auto :do not specify the type, the compiler finds it out at compile time. Useful to avoid tedious
typing also detrimental for readability of the code!

Range-based loops: build a loop with a concise syntax!

Take advantage of this! ©

CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Parallel Patterns

= After reminding ourselves about serial control patterns, let’'s have a look at a few parallel
patterns

= Can help you structure your parallel program

= The serial iteration pattern has many parallel offsprings
= Map
= Partition
= Reduce

= Scan

= Other useful patterns
= Pipeline
= Superscalar Sequences

162 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN S
M a p School of Computing

= The map is the most trivial parallel extension of the serial
iteration

= Apply the same function £ on multiple elements of a
collection in parallel

= We hide the loop!

= Requirements:

= No loop-carried dependency
= Function £ is pure, i.e. without side-effects

= Scaling: n (linear w.r.t. the number of elements in the
collection)

163 CERN School of Computing 2022

SW Design in the Many-Cores Era q '::
CERN S
M a p I I School ©f Computing

= Libraries like Intel's Threading Building Blocks (TBB) provide already all ingredients for
standard patterns like map.

= |tis called parallel for: Spawns one task for each element from 0 to N-1

tbb::parallel for(
// Define iteration space
Ol Nl
// Apply function f
[&](size_ t 1) {

f(data[i]);

}

)i

164 CERN School of Computing 2022

https://spec.oneapi.io/versions/latest/elements/oneTBB/source/algorithms/functions/parallel_for_func.html

165

SW Design in the Many-Cores Era @
CERN

Interlude — Lambdas i TGomp

Lambda expressions are anonymous functions and can be assigned to the std: : function type
They can be passed as parameters as if they were regular variables

When defined, they can capture a specific set of variables (or all)

Once they have been defined, they can be passed to functions like std: : for_each or TBB's parallel for

std::function< double (double, double) >
f =[] 1 (double a, double b) { return a + b; };
std::cout << £ (23.0, 24.0);

CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Interlude — Lambdas I

= Using the C++ auto keyword simplifies the syntax, but does not change the behavior
auto £ = [] (double a, double b) { return a + b; };

= Capture the variable globalOffset as a reference and use it in the computation
auto £ = [&globalOffset] (double a, double b)
{ return a + b + globalOffset; };

= Capture all variables defined in the current scope by value

auto £ = [=] (double a, double b)
{ return a + b + globalOffset; };

= Can you think of the difference in behavior when using capture-by-value instead of capture-by-
reference?

166 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

P a rt i t i o n S<E:hool of Computing

= The map pattern helps when parallelising on collections

= However, sometimes it is useful to treat multiple items together
= E.g. for the combination of multithreading and vectorisation

= Multi-level parallelism!
= Partitioning allows for a custom split of the collection into subcollections or chunks

= A variant of partitioning is called geometric decomposition
= Update of a partition needs data from other partitions
= Might require synchronisation

167 CERN School of Computing 2022

SW Design in the Many-Cores Era

Granularity
Core Time S
Too coarse '
‘§0
—[_ &
Task Overhead

Too fine-grained

[
]

168 CERN School of Computing 2022

- O

- O

Map-Partition with TBB S o

= We can still use parallel for, but we can run it in chunks using blocked range

= Auto-partitioning applied by TBB

tbb::parallel for(
// define iteration space
tbb::blocked range<size t>(0, N),
// apply function to a chunk
[=](const blocked range<size t> & r) {
for (auto i = r.begin(); i != r.end(); ++1i)
f(data[i]);

);

169 CERN School of Computing 2022

https://spec.oneapi.io/versions/latest/elements/oneTBB/source/algorithms/blocked_ranges/blocked_range_cls.html

SW Design in the Many-Cores Era @
CERN

Reduce e

= A reduction combines the elements of a collection into a single result using a combiner
function

= Requirements:
= No loop-carried dependency apart from the combined result

= Combiner function is associative
= Be careful with floating-point operations!

= Having a commutative function is beneficial

170 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Reduce ll

El
School ©f Computing

Result

= Speedup: n/logn
= Counters are a typical example for reduction input

= Before coming to a real example, let’'s have a look at modern C++ again...

171 CERN School of Computing 2022

172

SW Design in the Many-Cores Era

Reduce lll

TBB and parallel reduce:

School ©f Computing

int sum = tbb::parallel reduce(

// The input array, which will be partitioned automatically
tbb::blocked range<int*>(array, array + size),
// Identity value for the sum reduction
0,
// Lambda that returns the sum of all elements in a partition
[1(const tbb::blocked range<int*> & r, int v) {

for (auto i = r.begin(); i != r.end(); ++i) v += *i;

return v;

b

// Reduction operation that combines the per-partition sums
[1(int x, int y) { return x + y; }

CERN School of Computing 2022

https://spec.oneapi.io/versions/latest/elements/oneTBB/source/algorithms/functions/parallel_reduce_func.html

SW Design in the Many-Cores Era

173

Map and Reduce Combined

Usually map and reduce go hand in hand:
= A function being applied to single elements

= The results are then passed to a combiner function

A concrete example:
= Count the number of times a certain word appears in a text

Solution:
= Partition: Split the text in equally-sized chunks
= Map: Do the word count
= Reduce: Add the counts

Various map/reduce frameworks at your disposal!

CERN School of Computing 2022

CER
Scho:

X

ol of Computing

174

SW Design in the Many-Cores Era @
CERN

The Power of Map-Reduce

The combination of the Map and Reduce patterns has been extremely successful in massive
distributed data processing

A little bit of history...
= 2004: Google publishes the MapReduce paper

= 2006: Hadoop is released, inspired by MR

Nowadays, MR is behind every click on popular web sites or services

= Facebook, Twitter, Yahoo, ...

= Analytics to predict user interests, target ads, show recommendations, ... and many more
= Robust, fault tolerant

= Scale to crunch large datasets

CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

Map-Reduce and Functional Chains "=

= Map and reduce were born in functional programming
= Declare what you want to do, not how

= No side-effects

= High-level view, based on two main concepts:
= Data is organised in collections of elements
= We apply functions to those elements, possibly in a chain

histo = events.map(fillHist).reduce(mergeHist)

K

= |mplemented by frameworks like Spark and ROOT’s RDataFrame SpQ

= No need to manage parallelisation, just think about opportunities for parallelism!

175 CERN School of Computing 2022

SW Design in the Many-Cores Era

176

Map-Reduce and Functional Chains Il

= |Implementation responsible for producing a parallel execution plan
= Where are the data?
= What resources are available?

= What optimisations can be applied?

Events Events Histogram Final
(partitions) (partitions) Histogram

CERN School of Computing 2022

X

CER
School ©f Computing

177

SW Design in the Many-Cores Era @
CERN

Scan o I

= Scan is another offspring of the iteration pattern with more relaxed boundary conditions

= Requirements:
= Result of element n depends on n-1

= Successor function is associative

CERN School of Computing 2022

SW Design in the Many-Cores Era (&
CERN

S Ca n I I School of Computing

KN KN KN KN K3 KN KN KN

EEREEEEEEEEE R EN
Serial Parallel
version version

178 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN

S ca n I I I School of Computing

= Scan is another offspring of the iteration pattern with more relaxed boundary conditions

= Requirements:
= Result of element n depends on n-1

= Successor function is associative
= Already a non-trivial implementation necessary

= Speedup: very limited
= Atmostn/logn

= Number of instructions required is worse (up to x2)

179 CERN School of Computing 2022

SW Design in the Many-Cores Era

CERN

]] School ©f Computing
Pipeline
* The pipeline pattern is the good old assembly line
= Work split into a sequence of operations with a producer-
consumer relationship

= Work items go from one stage to the next

= The order of steps is important

= Different operations on different items are independent

= Stages can be serial or parallel (accept one or more items

y

simultaneously) -
= More complex cases can have a directed acyclic graph instead of #

a purely linear setup

197

-

= The speedup of a pipeline is given by Amdahl’ s Law D

180 CERN School of Computing 2022

SW Design in the Many-Cores Era

181

Pipeline li

Intel’s TBB offers a feature for implementing a pipeline too:

parallel pipeline(max_number of live tokens,

)7

make filter<void,I1> (mode0O, a) &
make filter<Il,I2> (model, b) &
make filter<I2,void> (mode2, c)

e

~

parallel
serial in order
serial out of order

CERN School of Computing 2022

School ©f Computing

5

-

y

-

197

SW Design in the Many-Cores Era

182

Pipeline lll

float RootMeanSquare(float* first, float* last, int n) {
float sum = 0;
parallel pipeline(16,
make filter<void,float*>(
filter::serial in order,
[&](flow control& fc) => float* {

if (first < last) { Step 1 handles
return first++; <
} else { the data stream

fc.stop();
return nullptr;

}

}

) &

make filter<float*,float>(P Step 2 can run
filter::parallel, - in parallel with

* * *(* . .

) ;](float p) { return (*p)*(*p); } itself

make filter<float,void>()
filter::serial in order, < Step 3 is not
[&] (float x) { sum += x; } thread-safe

)
)i
return sqrt(sum / n);

}

CERN School of Computing 2022

CER!
Scho:

X

ol of Computing

SW Design in the Many-Cores Era @
CERN

Superscalar Sequences

= Split work into several tasks and define their data
dependencies |

= | et atask scheduler do the rest

= Pattern followed by concurrent HEP data processing
frameworks L

Time

—

= Assumption of this model is that there are no hidden data dependencies and no
side-effects unknown to the scheduler

= Let's have a look at these assumptions...

183 CERN School of Computing 2022

SW Design in the Many-Cores Era @
CERN S
DAGs in TBB e —"

= TBB flow graph interface:

tbb::flow: :graph g;

tbb::flow::function node< int, int > n(g, unlimited, [](int v) -> int {
// do something
return v;

})i

tbb::flow::function node< int, int > m(g, 1, [](int v) -> int {
// do something else
return v;

})i

tbb::flow: :make_edge(n, m);

n.try put(1); n.try put(2); // try put(...)
g.wait for all();

184 CERN School of Computing 2022

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Parallelizing_Flow_Graph.html

SW Design in the Many-Cores Era

185

Hidden Data Dependencies

std::atomic_bool doit(false); « Thread-safe
boolean variable

void taskl() {

if (doit)) {
eventstore.put (fancystuff);
}

}
void task2() {

doit = true;

}

Content of the event store depends on the execution order
Thread-safe objects don’t help at all

It is a pure logic flaw

CERN School of Computing 2022

ERI
Scho:

e O

ol of Computing

186

SW Design in the Many-Cores Era C&
. School of Computi
chool ©/- Computing
Side Effects

Triggered when a computation modifies some shared state outside of its local environment
= e.g. aglobal variable

They are a major obstacle for parallelism

= Watch out for them when applying your parallel patterns!
In general, every non thread-safe resource is an issue

Remember from previous lectures:
= Side-effect free resources are the ideal solution

= |If not possible, tell the scheduler about what you need and “reserve” or copy what is
unsafe

CERN School of Computing 2022

187

SW Design in the Many-Cores Era C&
C

Take-Away Messages

There exist design patterns to help you parallelising your programs

= Check if you can reuse them!

They all have their origin in serial patterns, but add constraints to the operations
allowed

Map-Reduce is a very successful pattern, used every day for distributed
processing of large amounts of data

High-level interfaces like C++ lambdas, the TBB library or the Spark framework
make it easier for you to get started with these patterns

CERN School of Computing 2022

