Heterogeneous
computing.
Quick intro

TOMASZ SZUMLAK

CPU Architecture - cCLUTC

What is heterogeneous computing?

CPU, GP-GPU

TPU?

APU, DPU, SoC?

VPU, FPGA, ASIC, ARM?

Because all is heterogeneous now...

d In principle all devices from cell phones to large
computing centres features h. architecture

d Even a cheap laptop now can combine up to three
different processing units (P.U.): APU, CPU and GPU

d Formally, we define the h.architecture device, as one
that use more than one kind of processor or cores

(These co-processors can be ASICs, FPGA chips, GPU
cards, etc...

d The trick part is to provide appropriate interfaces...

What is available on the market?

(d CUDA — Compute Unified Device Architecture (the
most popular proprietary platform for CPU-GPU
systems)

J OpenCL - most popular open-source framework for
executing code on h.architectures, very versatile and
very powerful!

J OpenACC — a programming standard to facilitate
parallel computing applications

CUDA

« In the CUDA programming model each computing system has:
- It stands for: ,,Compute Unified Device Architecture”
» a host - usually a 'traditional’ CPU
» a device (can be more than one actually!) - massive parallel
coprocessors
» with the coprocessor having a large number of arithmetic units

« Vital property of many algorithms is data parallelism
» Processing operations can be safely executed on the application’s data
at the same time
» Matrix multiplication is an excellent example

« Application can be divided into parts

» Typically sequential are run on CPU
« These exhibiting data parallelism can be shipped to the coprocessor

CUDA Programming Model

Applications

Programming Model

» Communication Abstraction

Compiler/Library

» User/System Boundary
Operating System

» Hardware/Software Boundary

Architectures

Copyright Wrox

d CUDA PM exposes to us the following:

1 a method to organise threads on the GPU
using a hierarchy of threads

O Tells us how to access memory on the GPU
through a hierarchy of memory

CUDA Programming Model

d And a quick reminder - CUDA Programming structure
d Host and its memory
[Device and its memory
d Host — Device (processing) — Host

CUDA C/C++ Application

Host = CPU
Host code ;ggg

Device = GPU

Parallel code % % ‘ ‘E%%
Host code A g??g

Device = GPU

Parallel code

Managing the threads

O All threads ,spawn’ by a single
kernel is called a grid

O All threads in a grid share the
Grid same global memory

Kernel |——» Biock ol Block A Agrid can be splitted into blocks
' : : of threads

Host Device

Blogk™ || Blosk | |, Block @ For each such block threads can
- . cooperate with each other:

T O block-based synchronization

d block level shared memory

d NOTE! Threads from different
blocks cannot cooperate!

O All of this is done with a language
that is an extension to C...
(Saturday...)

Copyright by Wrox

Open-source solution

GPUs

Increasingly general
purpose data-parallel
computing

CPUs Emerging
Multiple cores driving Intersection

performance increases /
- (OEE
R

Multi OpenCL Graphics
pro:esls-or Heterogeneou APIs and
i - Computin Shading
programming L
- e.g. \\ anguages
OpenMP

OpenCL - simply had to be invented!

Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, ASICs, FPGAs,....

Where to look for a kick-start

d Alot of excellent courses available on-line
d Definitively my winner is: ,Hands On OpenCL”
1 Itis a self consistent, end-to-end course
Hands-on examples provided via github repository
Very nice slides accompany the course (I borrowed a few!)
Extensive setting-up for various platforms provided
,Must see” for everybody interested in OpenCL

U 0000

https://handsonopencl.github.io/

d NVIDIA recently integrated support for OpenCL into their
software driver package

L https://developer.nvidia.com/opencl

https://handsonopencl.github.io/
https://developer.nvidia.com/opencl

OpenCL Hands-on

Hands On OpenCL

Created by

Simon Mcintosh-Smith University of
and Tom Deakin BRISTOL

KITE

Khronos Initiative for
Training & Education

Timothy G. Mattson (Intel) and Benedict Gaster (Qualcomm) V1.2 - Nov 2014

UL HPC Tutorials
Docs » GPU Programming » Introduction to OpenCL Programming

Latest HPC School

Introduction to OpenCL Programming (C/C++)

Overview
. Copyright (c) T. Carneiro, L. Koutsantonis, 2821 UL HPC Team <hpc-team@uni.lu>
Pre-Requisites

Clone and setup ULHPC Tutorials

The UNIX/Linux Shell Uni.lu HP chnoo

S55H and OpenOnDemand

PS10b: Introduction to OpenCL
Programming

Overview
Job scheduling with SLURM

Using software modules - £ .
: T Uni.lu High Performance Computing (HPC) Team

Computing & T. Carneiro L. Koutsantonis

Big Data Services

Easybuild : :
University of Luxembourg (UL), Luxembourg

Data Management

https://hpc.uni.lu/

Advanced job scheduling with SLURM

LUZZEMBOURG

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/

OpenCL Working Group within Khronos

J Diverse industry participation
1 Processor vendors, system OEMs, middleware vendors,
application developers.
[OpenCL became an important standard upon
release by virtue of the market coverage of the
companies behind it.

LABS aanveion BIZBR) AMDOCU ARM srodhcou @

CCCCCCCCCCCCC

)

-

'\\

r' . - -\\I .
@ codeplyy ERICSSON Z =~ freescale") &4....

\

[[mm]|
_.,,Illl
el

P

Imagination ‘l%x ¢ h‘?#‘i ﬁ'ﬁm o8 MOTOROLA (’mff I%ﬁ.mf) NOKIA ﬁ‘i‘ﬁ' A U SOFTWARE StSEws
RAPIDAMIND ?d . k} TEXAS "3?:2::5‘";
@ Seaweed TAKUMI INSTRUMENTS = el S
SYSTEMS “ Ly
KHRCONOS

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

Laying the foundation

d The fundamental goal is to use all computation units
(resources) available on a given system

Exploits both data parallel (SIMD) and task parallel models
You create a OpenCL code by using extension to C
language (hmm, sounds similar to something you heard
today...?)

Providing abstraction of the underlying parallelism
Different implementations (i.e., different libraries from
AMD/ATI, NVIDIA, ...) define platforms which in turn can
enable the host system to interface with OpenCL-capable
device (again — very similar to CUDA enabled devices)

d OpenCL has its own particular ,structure”

DO

DO

Disecting OpenCL

d After working with CUDA a bit the OpenCL ecosystem
structure may seem a bit complicated — but remember it
is suppose to be much more generic!

 Platform Layer API
J Hardware abstraction layer
d Query facility, select and initialize compute devices

(CD)
1 Create compute contexts and task queues

d Run-time AP
d Execute compute kernels
d Scheduler to manage the resources: processing units

and memory

J Language
d C-based extension
d A lot of goodies as built-in functions

A hello word in OpenCL

d When working with OpenCL we use the following
hierarchy: one host + one (many) compute device(s)
(here the CPU is also a C.D.!), one or more compute units
and finally one or more processing elements...

Traditional loops Data Parallel OpenCL

kernel void

dp mul (global const float *a,
global const float *b,

void
trad_mul(int n,
const float *a,

const float *b, global float *c)
float *c) {
{ * int id = get global id(0);
int i;
for (i=0; i<n; i++) c[id] = a[id] * b[id];

c[i] = a[i] * b[1i];

}

} // execute over “n” work-items

© Copyright Khronos Group

OpenCL Platform Model

Ialalls
|||"||'||"| HH
o HF 7
O /
Processing =X
—

Element s | H Host
- Hmm”

Compute Unit OpenCL Device

d One and one or more
[Each OpenCL Device is composed of one or more

L Each Compute Unit is divided into one or more

J Memory divided into and device memory

OpenCL Platform Model

| : @7

er Host

Processing =0
=
Whatever processors are available in the

Element [0
il H H
\system that can be ,talked to” by OpenCL

. (CPU, GPU,...)
Compute Unit OpenCL Device

d One and one or more
[Each OpenCL Device is composed of one or more

L Each Compute Unit is divided into one or more

J Memory divided into and device memory

Parlez-vous OpenCL?

J Kernel — the atom of execution, usually just a
function (in C-language sense)

J Host application — one or more kernels managed
via not OpenCL specific code

J Work group: a collection of work items, must
have a unique work group ID, work item can be
synchronised

Jd Work item: an instance of a kernel at run time, it

must have a unique ID within the work group
J Sounds familiar...?

How does it compare to CUDA?

d Let’s create an explicit ,translation matrix”

J OpenCL ,style” 1 CUDA ,style”

d Kernel d Kernel

J Host J Host
application application

J NDRange d Grid

J Work item d Thread

1 Work group Block

d Aha! If you know one, you know both of them!

An N-dimensional domain of work-items

Dimensions:
d 1024x1024 (whole problem space)

Dimensions:
L 64x64 (, executes together)

G— Synchronization between work-
IR items possible only within work-
L.

AL 1 and
SHlma | [LS .
| g T —— Cannot synchronize
[| between

within a kernel

. Choose the dimensions that are “best” for your
algorithm (tuning a bit more difficult)

A generic structure of an OpenCL

prograimn
d Sorry for repeating
Op enCL Program myself... but a typical
Misc support OpenCL program is a bit
functions similar to its CUDA
counterpart
d It has a managing
Kernel A (service) part and one or
more kernels
" 1B d As in CUDA the kernel is
== just a basic atom of
parallel code to be
Kernel C executed on the target
device

The flow — vector addition example

// create the OpenCL context on a GPU device // build the program
cl context context = clCreateContextFromType (0, err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL) ;
CL _DEVICE TYPE GPU, NULL, NULL, NULL);
// create the kernel
// get the list of GPU devices associated with context kernel = clCreateKernel (program, “vec_add”, NULL);
clGetContextInfo(context, CL CONTEXT DEVICES, 0, NULL, &cb);

// set the args values

cl device id[] devices = malloc(cb); err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
clGetContextInfo (context,CL CONTEXT DEVICES,cb,devices,NULL) ; sizeof (cl _mem)) ;

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],
// create a command-queue sizeof (cl mem)) ;
cmd_queue = clCreateCommandQueue (context,devices[0],0,NULL); err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof (cl mem)) ;

// allocate the buffer memory objects // set work-item dimensions
memobjs[0] = clCreateBuffer (context, CL MEM READ ONLY | global work size[0] = n;

CL_MEM COPY HOST PTR, sizeof(cl float)*n, srcA, NULL);
memobjs[l] = clCreateBuffer (context, CL MEM READ ONLY | // execute kernel

CL_MEM COPY HOST PTR, sizeof(cl_float)*n, srcB, NULL); err = clEnqueueNDRangeKernel (cmd queue, kernel, 1, NULL,

global_ work size, NULL,0,NULL,NULL);
memobjs[2] = clCreateBuffer (context, CL MEM WRITE ONLY,
sizeof(cl float)*n, NULL, NULL); // read output array
err = clEnqueueReadBuffer (cmd_queue, memobjs[2],

// create the program CL _TRUE, O,

program = clCreateProgramWithSource (context, 1, n*sizeof (cl_float), dst,

&program_source, NULL, NULL); 0, NULL, NULL);

The flow — vector addition example

// create the OpenCL context on a GPU device // build the progr

°
cl_context context = clCreateContextFromType (0, err = clBuildProgr Bulld the
CL_DEVICE_TYPE GPU, NULL, NULL, NULL); program

// create the kern
// get the list of GPU devices associated with context kernel = clCreateKernel (program, “vec_add”, NULL);

clGetCo:

Define platform and /1 ast the azge values

cl_devi queues err = clSetKernelArg(kernel, 0, (void *) &memobjs[O0],

. Create and setup
// create a command—queue kernel

cmd_queue = clCreateCommandQueue (context,devices[0],0,NULL) ; err |= clSeuineriucinry\reruel, £, (VULIU ") CSMUL S L],

clGetCo:

sizeof (cl_mem)) ;

// allocate the buffer memory objects // set work-item dimensions

Define memory objects

memobjs[1l] = clCreateBuffer (context, CL_MEM READ ONLY |

CL_MEM COPY_HOST PTR, sizeof(cl_float)*n, srcb, NULL); Execute the

memobjs[0] global_work_size[0] = n;

kernel

memobjs[2] = clCreateBuffer (context, CL MEM WRITE ONLY,

sizeof (cl_float)*n, NULL, NULL);

, =ete me Create the program

program = clCreateProgramWithSource (context, 1,

&program_source, NULL, NULL) ;

A high level snapshot of what is going on

] B

Context

I

Programs Ke

X

{ {

els Memory Objects Command Queues

) f 1

1|3 e

. dp_mul J] ll
__kernel void — ‘ Buffers Images
dp_mul(global const float *a, p_mu
global const float *b, CPU program binary arg[0] value In Out of
global float *c) j—— Order Order
{ dp_mul arg[1] value ueue Queue
int id = get_global_id(0); GPU program binary ol Q
c[id] = a[id] * b[id]; —— |
oiFvale || Compute Device

Compile code

A ,complete” OpenCL program

Select the desired devices (ex: all GPUs)
Create a context
Create command queues (per device)
Allocate memory on devices
Transfer data to devices
Comp”e programs | ° clCreateProgramWithSource
C I | I * clBuildProgram

reate kernels * cICreatKernel
Execute
Transfer results back
10. Free memory on devices

Voo NOULAEWDNRE

A fierce beast — context

J We should understand context as the
environment for managing both objects and
resources in OpenCL sense

d This management is provided via appropriate

abstraction
d Context knows the as ,,something” that is
capable of performing computations
: source that implements kernels

: code that can be executed on OpenCL
enabled devices

: data that is used by devices
: specialised mechanism for
interacting with compute devices

Command queue

Programming
Layer
Command
Queues

M1 l‘(| E1 Kz Mz K3 M3

For CPU queue For CPU queue For GPU queue

e s ! e = st s P s, s e e e { et dmmt

Scheduler

L

2
CPUCore 1 | CPU Core 2 |GPUCore1| |GPU Core2|

AMD OpenCL User Guide 2015

Memory management

Private Private Private Private
Memory Memory Memory Memory

Work-ltem || | Work-ltem

Work-ltem Work-ltem

- A

Local Memory Local Memory

Work-Group Work-Group

| Global Memory & Constant Memory I

Compute Device

Host Memory

J Memory management is
You are responsible for moving data from
host — global — local and back

,Lhreads” mapping

OpenCL CUDA

0 geT_IOCG]_“d(O) . ThP@GdIdX'X

* gef_global_size(0) . iipim s*blockDim.x

« get_local_size(0) - blockDim.x

Context and Command-Queues

[The environment within which
kernels execute and in which
synchronization and memory
management is defined.

d The includes:
(1 One or more devices
1 Device memory
(1 One or more command-queues
Al for a device (kernel
execution, synchronization, and memory

transfer operations) are submitted
through a

 Each points to a
single device within a context.

Queue

Context

This page i1s intentionally left
(almost) blank

AND NOW

FOR SOMETHING
COMPLETELY

DIFFERENT.

The toolkit

PGI Compller

en (-0 for academia
DEenACLLC COmp Oor acade

NVProf Profller

iere to add compiler directives

GPU Wizard“

Code Samples

...... ~ - slamasr mwvadiIs ~2am / Arnarass~ < C ~ S C MiK o N -\ - Qs

Documentatlon

start guide, best practices, Forums

Introduction to OpenACC Programming Model
(C/C++ and Fortran)

Copyright (c) E. Krishnasamy, 2813-2821 UL HPC Team <hpc-sysadmins@uni.lu>

EAEA L=
I &
S
Uni.lu HPC School 2021

PS10a: Introduction to GPU programming with
OpenACC

High Performance Uni.lu High Performance Computing (HPC) Team
Computing &

Big Data Services Dr. E. Krishnasamy

University of Luxembourg (UL), Luxembourg

http://bpc.uns.lu

LU IEMBOURG

1] R
Unilu HPC School 2021/ PS10a o0

A

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/openacc/basics/

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/openacc/basics/

Big picture

J OpenACC is making your computations much
faster but in a completely different way...

d Minimal changes to your original code — fast to
make (clear) and easy to maintain

d Hint the compiler how and where to try to make
the code faster and it will obey! (almost each
time thatis...)

d It is somewhat in the middle of pure CUDA and
OpenCL

d The source compilation will depend on the h/w
resources present in your system — cool!

Big picture

d The main motivation behind providing yet
another way of accelerating stuff was to make it
more accessible for scientist that do not like to do
computing... (there are people like that!)

L In away itis much more transparent and do not
require people to attend CUDA lectures...

d The changes are made by introducing directives
into the code

J However, if one wants to go deeper, as usual,
extensive effort is needed — no pain no gain!

y e SR
. _ i _Emf{

| TN

i

i

Main ideas

d The main paradigms of OpenACC

J Minimal intrusion (just a few percent of code
changes may bring a huge speed-ups)

J Use pragmas (compiler hints)

J Portability — do not limit your code to a given
OS or h/w — one code to run everywhere

main()
<serial code>
#pragma acc kemels
//automatically runs on GPi

<parallel code>

- }

A first view

Manage #pragma acc data copyin(a,b) copyout
Data /{ u | |

Movement
#pragma acc parallel

Initiate E‘r***r*" T
Parallel oy ol gl o0 Wity ivios
Execution for (1 =0; 1 < n; +-!—1) {

z[1] = x[1] + y[i];
Optimize ; }
Loop
Mappings cee Open ACC

Compromises

Portability Accelerated Libraries
High performance with little or no code change

Limited by what libraries are available

Compiler Directives
High Level: Based on existing languages; simple, familiar, portable
High Level: Performance may not be optimal

Parallel Language Extensions
Greater flexibility and control for maximum performance

Performance . ; :
Often less portable and more time consuming to implement

Kernel directives

OpenACC kernels Directive

The kernels directive identifies a region that may contain loops that the
compiler can turn into parallel kernels.

#pragma acc kernels

{

fnrts-.nt-:L:ﬂ; '1{11: i++) } e The compiler identifies
yiil - 2.0, 2 parallel loops and

‘ generates 2 kernels.

for(int i=0; i<N; i++)

: y[il = a*x[i] + y[il; } kernel 2

}

Compiling PGI comiler
(OpenACC

toolkit)

$ pgece -fast -ta=tesla -Minfo=all laplace2d.c
main:
40, Loop not fused: function call before adjacent loop
Generated vector sse code for the loop
51, Loop not vectorized/parallelized: potential early exits
55, Generating copyout (Anew([1:4094][1:4094])
Generating copyin(A[:]1[:])
Generating copyout (A[1:4094][1:4094])
Generating Tesla code
Loop is parallelizable
59, Loop is parallelizable
Accelerator kernel generated
57, #pragma acc loop gang /* blockIdx.y */
59, #pragma acc loop gang, vector(l1l28) /* blockIdx.x threadIdx.x */
63, Max reduction generated for error
67, Loop i1s parallelizable
69, Loop 1s parallelizable
Accelerator kernel generated
67, #pragma acc loop gang /* blockIdx.y */
69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Data movement... yes!

The data directive defines a region of code in which GPU arrays remain on
the GPU and are shared among all kernels in that region.

#pragma acc data .

{

#pragma acc kernels Arrays used within the

tass -~ Data Region data region will remain
on the GPU until the

#pragma acc kernels end of the data region.

} -

More hints to
the compiler...

Data clauses

copy (list) Allocates memory on GPU and copies data from host to GPU
when entering region and copies data to the host when
exiting region.

copyin (list) Allocates memory on GPU and copies data from host to GPU
when entering region.

copyout (list) Allocates memory on GPU and copies data to the host when
exiting region.

create (list) Allocates memory on GPU but does not copy.
present (list) Datais already presenton GPU from another containing
data region.

deviceptr(list) The variable is a device pointer (e.g. CUDA) and can be

. . . used directly on the device.
Explicit shaping

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Resources

OPENACC TOOLKIT

Free for Academia

Download link:
https://developer.nvidia.com/openacc-toolkit

NEW OPENACC BOOK

Parallel Programming with OpenACC

Available starting Nov 1st; 2016:

http://store.elsevier.com/Parallel-Programming-
with-OpenACC/Rob-Farber/isbn-9780124103979/

