
Heterogeneous
computing.
Quick intro

T O M A S Z S Z U M L A K

What is heterogeneous computing?

CPU, GP-GPU

TPU?

APU, DPU, SoC?

VPU, FPGA, ASIC, ARM?

7

Because all is heterogeneous now…

❑ In principle all devices from cell phones to large
computing centres features h. architecture

❑ Even a cheap laptop now can combine up to three
different processing units (P.U.): APU, CPU and GPU

❑ Formally, we define the h.architecture device, as one
that use more than one kind of processor or cores

❑ These co-processors can be ASICs, FPGA chips, GPU
cards, etc…

❑ The trick part is to provide appropriate interfaces…

What is available on the market?

❑ CUDA – Compute Unified Device Architecture (the
most popular proprietary platform for CPU-GPU
systems)

❑ OpenCL – most popular open-source framework for
executing code on h.architectures, very versatile and
very powerful!

❑ OpenACC – a programming standard to facilitate
parallel computing applications

8

CUDA

9

CUDA Programming Model

❑ CUDA PM exposes to us the following:

❑ a method to organise threads on the GPU

using a hierarchy of threads

❑ Tells us how to access memory on the GPU

through a hierarchy of memory

Copyright Wrox

10

CUDA Programming Model

❑ And a quick reminder – CUDA Programming structure

❑ Host and its memory

❑ Device and its memory

❑ Host → Device (processing) → Host

Copyright Wrox

11

Managing the threads

Copyright by Wrox

❑ All threads ‚spawn’ by a single

kernel is called a grid

❑ All threads in a grid share the

same global memory

❑ A grid can be splitted into blocks

of threads

❑ For each such block threads can

cooperate with each other:

❑ block-based synchronization

❑ block level shared memory

❑ NOTE! Threads from different

blocks cannot cooperate!

❑ All of this is done with a language

that is an extension to C…

(Saturday…)

12

Open-source solution

OpenCL – simply had to be invented!

Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, ASICs, FPGAs,….

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g.

OpenMP

Emerging
Intersection

Heterogeneous
Computing

13

Where to look for a kick-start

❑ A lot of excellent courses available on-line

❑ Definitively my winner is: „Hands On OpenCL”

❑ It is a self consistent, end-to-end course

❑ Hands-on examples provided via github repository

❑ Very nice slides accompany the course (I borrowed a few!)

❑ Extensive setting-up for various platforms provided

❑ „Must see” for everybody interested in OpenCL

❑ https://handsonopencl.github.io/

❑ NVIDIA recently integrated support for OpenCL into their
software driver package

❑ https://developer.nvidia.com/opencl

14

https://handsonopencl.github.io/
https://developer.nvidia.com/opencl

OpenCL Hands-on

15

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/opencl/

17

OpenCL Working Group within Khronos

❑ Diverse industry participation
❑ Processor vendors, system OEMs, middleware vendors,

application developers.

❑ OpenCL became an important standard upon
release by virtue of the market coverage of the
companies behind it.

Third party names are the property of their owners.

17

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

Laying the foundation

❑ The fundamental goal is to use all computation units
(resources) available on a given system

❑ Exploits both data parallel (SIMD) and task parallel models
❑ You create a OpenCL code by using extension to C

language (hmm, sounds similar to something you heard
today…?)

❑ Providing abstraction of the underlying parallelism
❑ Different implementations (i.e., different libraries from

AMD/ATI, NVIDIA, …) define platforms which in turn can
enable the host system to interface with OpenCL-capable
device (again – very similar to CUDA enabled devices)

❑ OpenCL has its own particular „structure”

18

Disecting OpenCL

❑ After working with CUDA a bit the OpenCL ecosystem
structure may seem a bit complicated – but remember it
is suppose to be much more generic!

❑ Platform Layer API
❑ Hardware abstraction layer
❑ Query facility, select and initialize compute devices

(CD)
❑ Create compute contexts and task queues

❑ Run-time API
❑ Execute compute kernels
❑ Scheduler to manage the resources: processing units

and memory
❑ Language

❑ C-based extension
❑ A lot of goodies as built-in functions

19

A hello word in OpenCL

❑ When working with OpenCL we use the following
hierarchy: one host + one (many) compute device(s)
(here the CPU is also a C.D.!), one or more compute units
and finally one or more processing elements…

20

OpenCL Platform Model

❑ One Host and one or more OpenCL Devices
❑ Each OpenCL Device is composed of one or more

Compute Units
❑ Each Compute Unit is divided into one or more Processing Elements

❑Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host

Compute Unit

21

OpenCL Platform Model

Processing

Element

OpenCL Device

…
…

…

…

…
…

…

…

…
…

…

…

…
…

…

Host

Compute Unit

Whatever processors are available in the

system that can be „talked to” by OpenCL

(CPU, GPU,…)

22

❑ One Host and one or more OpenCL Devices
❑ Each OpenCL Device is composed of one or more

Compute Units
❑ Each Compute Unit is divided into one or more Processing Elements

❑Memory divided into host memory and device memory

Parlez-vous OpenCL?

❑ Kernel – the atom of execution, usually just a
function (in C-language sense)

❑ Host application – one or more kernels managed
via not OpenCL specific code

❑ Work group: a collection of work items, must
have a unique work group ID, work item can be
synchronised

❑ Work item: an instance of a kernel at run time, it
must have a unique ID within the work group

❑ Sounds familiar…?

23

How does it compare to CUDA?

❑ Let’s create an explicit „translation matrix”

❑ Aha! If you know one, you know both of them!

❑ OpenCL „style”
❑ Kernel
❑ Host

application
❑ NDRange
❑ Work item
❑ Work group

❑ CUDA „style”
❑ Kernel
❑ Host

application
❑ Grid
❑ Thread
❑ Block

24

An N-dimensional domain of work-items

❑ Global Dimensions:
❑ 1024x1024 (whole problem space)

❑ Local Dimensions:
❑ 64x64 (work-group, executes together)

❑ Choose the dimensions that are “best” for your

algorithm (tuning a bit more difficult)

1024
1

0
2

4
Synchronization between work-

items possible only within work-

groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

25

A generic structure of an OpenCL

program

❑ Sorry for repeating

myself… but a typical

OpenCL program is a bit

similar to its CUDA

counterpart

❑ It has a managing

(service) part and one or

more kernels

❑ As in CUDA the kernel is

just a basic atom of

parallel code to be

executed on the target

device

26

The flow – vector addition example

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

27

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and

queues

Define memory objects

Create the program

Build the

program

Create and setup

kernel

Execute the

kernel

Read results on the

host

The flow – vector addition example

28

A high level snapshot of what is going on

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

29

A „complete” OpenCL program

30

A fierce beast – context

❑ We should understand context as the
environment for managing both objects and
resources in OpenCL sense

❑ This management is provided via appropriate
abstraction
❑ Context knows the devices as „something” that is

capable of performing computations
❑ Program objects: source that implements kernels
❑ Kernels: code that can be executed on OpenCL

enabled devices
❑ Memory objects: data that is used by devices
❑ Command queues: specialised mechanism for

interacting with compute devices

31

AMD OpenCL User Guide 2015

Command queue

Memory management

❑Memory management is explicit:

You are responsible for moving data from

host → global → local and back

33

„Threads” mapping

34

Context and Command-Queues
❑ Context:
❑ The environment within which

kernels execute and in which
synchronization and memory
management is defined.

❑ The context includes:
❑ One or more devices
❑ Device memory
❑ One or more command-queues

❑ All commands for a device (kernel
execution, synchronization, and memory
transfer operations) are submitted
through a command-queue.

❑ Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

35

This page is intentionally left

(almost) blank

The toolkit

37

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/openacc/basics/

https://ulhpc-tutorials.readthedocs.io/en/latest/gpu/openacc/basics/

Big picture

❑ OpenACC is making your computations much
faster but in a completely different way…

❑ Minimal changes to your original code – fast to
make (clear) and easy to maintain

❑ Hint the compiler how and where to try to make
the code faster and it will obey! (almost each
time that is…)

❑ It is somewhat in the middle of pure CUDA and
OpenCL

❑ The source compilation will depend on the h/w
resources present in your system – cool!

39

Big picture

❑ The main motivation behind providing yet
another way of accelerating stuff was to make it
more accessible for scientist that do not like to do
computing… (there are people like that!)

❑ In a way it is much more transparent and do not
require people to attend CUDA lectures…

❑ The changes are made by introducing directives
into the code

❑ However, if one wants to go deeper, as usual,
extensive effort is needed – no pain no gain!

40

Main ideas

❑ The main paradigms of OpenACC

❑ Minimal intrusion (just a few percent of code
changes may bring a huge speed-ups)

❑ Use pragmas (compiler hints)

❑ Portability – do not limit your code to a given
OS or h/w – one code to run everywhere

42

A first view

43

Compromises

44

Kernel directives

45

Compiling PGI comiler

(OpenACC

toolkit)

46

Data movement… yes!

More hints to

the compiler…

47

Data clauses

Explicit shaping

48

Resources

49

