
CERN School of Computing 2022

SW Design in the Many-Cores Era

1

CERN School of Computing 2022

Software Design in the Many-Cores era

A. Gheata, S. Hageböck

CERN, EP-SFT/IT

CERN School of Computing 2022

SW Design in the Many-Cores Era

2

Parallelism in a Modern HEP Data
Processing Framework

Lecture I

CERN School of Computing 2022

SW Design in the Many-Cores Era

3

Outline of This Lecture

§ From sequential to parallel

§ Experiment Frameworks: basic principles, design

§ Laws of parallelism

§ Concurrency Models: task-based parallelism

The Goals:
1) Understand why we need parallelisation
2) Understand the problem domain of physics processing
3) Break down big problems into work items that can be tackled in parallel
4) Be aware of the limitations for parallelisation

CERN School of Computing 2022

SW Design in the Many-Cores Era

4

Hitting the Wall(s)

§ Once upon a time, the life of software developers
was much easier
§ Sequential programming
§ Want your program to run faster? Buy yourself

a new machine!

§ The fairy tale ended in the early 2000s
§ Processor manufacturers had to rethink CPU

architectures
§ No more free lunch for software

CERN School of Computing 2022

SW Design in the Many-Cores Era

5

The Power Wall

§ Manufacturers could not keep
improving processor performance by
increasing frequency
§ Not at the same rate at least

§ Power consumption and dissipation
became limiting factors
§ Higher clock rate could lead to

overheating

ht
tp

s:
//w

w
w

.k
ar

lru
pp

.n
et

/2
01

8/
02

/4
2-

ye
ar

s-
of

-m
ic

ro
pr

oc
es

so
r-t

re
nd

-d
at

a/

CERN School of Computing 2022

SW Design in the Many-Cores Era

6

The ILP Wall

§ Processors apply multiple techniques to
optimise the execution flow
§ Pipelining
§ Branch prediction
§ Out-of-order execution
§ …

§ Instruction-Level Parallelism growth also
flattened
§ Hard to squeeze more work out of a

clock cycle

ht
tp

://
w

w
w

.g
ot

w
.c

a/
pu

bl
ic

at
io

ns
/c

on
cu

rr
en

cy
-d

dj
.h

tm

CERN School of Computing 2022

SW Design in the Many-Cores Era

7

The Memory Wall

§ Processor clock rates have been increasing
faster than memory clock rates

§ Latency in memory access is often the major
performance issue in modern software
applications

§ Larger and faster cache memories help
alleviate the problem but do not solve it

§ Often the CPU is just waiting for data…

CPU-Mem
Gap

CERN School of Computing 2022

SW Design in the Many-Cores Era

8

Multi/Many Core to the Rescue

§ Let’s change strategy
§ Grow by combining simpler processing units
§ Moore’s law reinterpreted: number of cores per chip will double every two years

How to make
the most of all
these
resources?

CERN School of Computing 2022

SW Design in the Many-Cores Era

9

From Single to Multi/Many core

Irwin-dale Wood-crest Gaines-
town

Haswell Broad- well Skylake Ice Lake AMD Epyc

Year 2005 2006 2009 2015 2016 2017 2021 2022

Cores 1 2 4 18 24 28 40 64
(128 SMT)

Freq (GHz) 3.8 3.0 3.33 2.1 2.2 2.5 2.3
(3.4 boost)

2.2
(3.5 boost)

LL
Cache

L2
(2MB)

L2
(4MB)

L3
(8MB)

L3
(45MB)

L3
(60MB)

L3
(38MB)

L3
(60MB)

L3
(768MB)

Evolution of server processors
(https://ark.intel.com / https://amd.com)

https://ark.intel.com/
https://amd.com/

CERN School of Computing 2022

SW Design in the Many-Cores Era

10

Need for Parallelism

§ Change of programming paradigm
§ Need to deal with systems with many parallel threads
§ Improvement in performance comes with exploitation of concurrency

§ Will all programmers have to be parallel programmers?
§ Different levels of exposure: explicit vs. implicit parallelism
§ First step is to change the way of thinking!

Parallelism is here to stay

CERN School of Computing 2022

SW Design in the Many-Cores Era

11

A Supercomputer

§ Perhaps the most striking example of parallelism
§ top500.org: approaching 10M cores (Frontier 2021: 8.7M)
§ Parallelism intra-node and inter-node
§ Multi/many core, hybrid setups: CPU - GPU

https://top550.org/

CERN School of Computing 2022

SW Design in the Many-Cores Era

12

Parallel Hardware

Accelerators for
massive parallelism

CERN School of Computing 2022

SW Design in the Many-Cores Era

13

How is Parallelism Achieved?

§ Supercomputer design tailored for High-Performance Computing:
§ Homogeneous nodes (+ accelerators)
§ High-bandwidth low-latency networks (InfiniBand, Aries)
§ Parallel distributed file system (Lustre, GPFS)

§ Explicit low-level parallelism dominates
§ MPI for distributing processes, message passing
§ OpenMP inside a node (+ CUDA, OpenCL, SYCL)

CERN School of Computing 2022

SW Design in the Many-Cores Era

14

Parallelisation in HEP

LHC Computing Grid (WLCG)

§ HEP is parallel since more than a decade
§ Computations are distributed among

hierarchically organised data centres spread
around the globe

§ Tens of billions of LHC events are processed
per year, running on > 1M cores 24/7 365 days
a year

Huge parallel infrastructure!

https://wlcg.web.cern.ch/using-wlcg/monitoring-visualisation/monthly-stats

https://wlcg.web.cern.ch/using-wlcg/monitoring-visualisation/monthly-stats

CERN School of Computing 2022

SW Design in the Many-Cores Era

15

Physics Challenges

CERN School of Computing 2022

SW Design in the Many-Cores Era

16

Physics Challenges II

§ Due to the beam intensity (“luminosity”) at the LHC multiple proton-proton collisions take place at
once (pile-up)

§ Pile-up expected to increase further in Run 3 and especially in HL-LHC

§ As a result, memory consumed by experiments’ reconstruction jobs will go up, making it hard to run
many simultaneous jobs on a single computer
§ Independent jobs do not share memory!

Furthermore:

§ Merging of results of independent jobs takes significant amount of time

So why not treating every many-core computer in
the WLCG as a computing centre of its own with

many independent jobs on it?

Another parallelisation strategy is needed!

CERN School of Computing 2022

SW Design in the Many-Cores Era

17

Framework Primer

Source
Output

Module

Digitizer Tracker
NTrack

Filter
Vertexer

Event

PATH keep?

yes

Experiment Software Follows the Idea of a Software
Bus

Each experiment has software with about 5 million lines of
code based on this model

CERN School of Computing 2022

SW Design in the Many-Cores Era

18

Framework Primer II

§ Multiple events are being processed sequentially

§ The result is being put into a single output file

§ This keeps only one core busy at a time

CERN School of Computing 2022

SW Design in the Many-Cores Era

19

How to Introduce Concurrency

§ The algorithms and their data dependencies form a DAG (directed acyclic graph)

§ Schedule the algorithms according to the DAG

§ Sounds more trivial than it is

§ Existing HEP software has many “backdoor” communication channels making
the DAG non-obvious.

CERN School of Computing 2022

SW Design in the Many-Cores Era

20

Real World Example

§ Particular example taken from LHCb
reconstruction program “Brunel”

§ Gives an idea for the potential
concurrency

§ ATLAS and CMS just don’t fit on a slide…

CERN School of Computing 2022

SW Design in the Many-Cores Era

21

The DAG Can Get Narrower

Long
serial sections
spoil speedup!

CERN School of Computing 2022

SW Design in the Many-Cores Era

22

Is Parallelisation Worth It?

§ We hit the wall very early – game over and that’s it?

§ Whenever thinking about parallelisation, one should spend some thoughts on
whether the effort is worth it
§ The total cost of ownership of one additional box might be smaller than the design-

implementation-maintenance costs

§ What is the performance gain we can expect?

Amdahl’s and Gustafson’s laws can help you there!

CERN School of Computing 2022

SW Design in the Many-Cores Era

23

Need for Speed(up)

§ We parallelise because we want to run our application faster

§ Speedup: how much faster does my code run after parallelising it?
§ Indicator of scalability

parallel

serial

Time
TimeSpeedup =

CERN School of Computing 2022

SW Design in the Many-Cores Era

24

n
pp

Speedup
+-

=
)1(

1

n: number of cores
p: parallel portion

“… the effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achievements in
sequential processing rates of very nearly the same
magnitude.” - 1967

§ It predicts the maximum
speedup achievable given a
problem of fixed size

Amdahl’s Law

CERN School of Computing 2022

SW Design in the Many-Cores Era

25

§ Often problem size increases, while serial parts remain constant

§ If problem size increases, so does the opportunity for parallelisation

§ Solve bigger problems in the same amount of time by using more resources

nppSpeedup +-=1

“… speedup should be measured by scaling the problem
on the number of processors, not by fixing the problem
size.” - 1988

n: number of cores
p: parallel portion

Gustafson’s Law

CERN School of Computing 2022

SW Design in the Many-Cores Era

26

Amdahl vs Gustafson

n=1 n=2 n=4 n=1 n=2 n=4

Amdahl Gustafson

Serial
Parallel

Time

CERN School of Computing 2022

SW Design in the Many-Cores Era

27

Increase the Problem Size!

Ti
m

e

CERN School of Computing 2022

SW Design in the Many-Cores Era

28

Strong and Weak Scaling

Case A
o A human is waiting in front of the

terminal: strong scaling
o A problem of a fixed size is

processed by an increasing number
of processors

o Best modelled with Amdahl’s law

Case B
o Want to get the most done in a certain

amount of time: weak scaling
o Every processor has a specified

amount of work to do, and then when
adding processors, we also add work

o Best modelled with Gustafson’s law

Two sides of the same
coin!

CERN School of Computing 2022

SW Design in the Many-Cores Era

29

Data Parallelism

Definition: parallelism achieved through the application of the same
transformation to multiple pieces of data

Example of pure data parallelism: multiplication of an array of values
(ordinary administration for vector units and GPUs!)

CERN School of Computing 2022

SW Design in the Many-Cores Era

30

Task Parallelism

Definition: parallelism achieved through the partition of load in small work
baskets consumed by a pool of resources.

Example of pure task parallelism: calculate mean, binary OR, minimum
and average of a set of numbers

CERN School of Computing 2022

SW Design in the Many-Cores Era

31

Mixed Solutions

Mandate: Build an efficient letter sending system mixing data and task
parallelism

Start

Fold

Stu
ff

S
eal

Address

Stamp

Mail

CERN School of Computing 2022

SW Design in the Many-Cores Era

32

Mixed Solutions
§ Fixed order of steps

§ Data parallelism is already evident
§ e.g. multiple pages of paper can be folded at the same time

Start Fold Stuff Seal Address Stamp Mail

Am
ou

nt
 o

f w
or

k
ge

ne
ra

te
d

CERN School of Computing 2022

SW Design in the Many-Cores Era

33

Mixed Solutions

§ These operations require different amount of work though

Start Fold Stuff Seal Address Stamp Mail

Am
ou

nt
 o

f w
or

k
ge

ne
ra

te
d

CERN School of Computing 2022

SW Design in the Many-Cores Era

34

What can be executed concurrently?

Some techniques to figure this out:

§ Data decomposition
§ The partition of the data domain

§ Recursive decomposition
§ Divide and conquer

§ Functional decomposition
§ Split according to program functions

§ Task decomposition
§ Split according to logical tasks

Finding Concurrency

DIVIDE
ET

IMPERA

CERN School of Computing 2022

SW Design in the Many-Cores Era

35

Mixed Data and Task Parallelism

§ Pure task/data parallelism is difficult to achieve in reality
§ Sometimes close enough to real use cases!

§ Mixing data and task parallelism is the key
§ Many different algorithms applied to a stream of data
§ Items processed in stages where data parallelism is expressed
§ Many items can pass through the pipeline simultaneously
§ Think of items as “collision events” and algorithms as “HEP data processing

units”!

CERN School of Computing 2022

SW Design in the Many-Cores Era

36

Rethinking the Parallel Framework

§ Need to change the problem size
§ Process multiple events concurrently
§ Helps on tails of sequential processing

§ Contradicts a lot of the basic assumptions
in existing code
§ Code prepared to process only one event

at a time in memory
§ But existing code can’t be thrown away easily
§ Need to localise distributed states

§ Major effort ongoing in all LHC experiments
§ Exciting times for curious programmers!

CERN School of Computing 2022

SW Design in the Many-Cores Era

37

A Glimpse on Complications

1. The DAG is not known to its entirety
§ Hidden dependencies

2. Shared states are rarely safe
§ “Caches” that do not behave like… well… caches

3. Algorithms are not thread-safe
§ E.g. track reconstruction cannot be run on two events concurrently
§ Making all algorithms thread-safe is an impossible task

4. External libraries are not thread safe
§ But independent parts of the framework access them
§ Not all of the libraries will be thread safe ever!

CERN School of Computing 2022

SW Design in the Many-Cores Era

38

Solutions?

We need a smart scheduling environment

1. The DAG must be “fixed” by changing the existing code

2. Shared states are replaced by task-local data, avoid locks!
§ More in the next lectures

3. If an algorithm requires a non-thread safe resource, it has to ‘reserve’ it beforehand
§ No two algorithms using the resource are scheduled at the same time

CERN School of Computing 2022

SW Design in the Many-Cores Era

39

Scheduling Directions

Three ways of coding up a scheduler for the DAG:

§ On demand
Start with the last algorithms in the DAG and invoke
whatever algorithm is needed on-the-fly.
(backward scheduling)

§ Data driven
Start with the first algorithms in the DAG and start new
algorithms whenever the necessary inputs are there.
(forward scheduling)

§ Global view
Analyse the entire DAG and schedule algorithms according
to the dependency order (graph scheduling)

CERN School of Computing 2022

SW Design in the Many-Cores Era

40

A Simplified Example

§ Such a parallel framework is not only theory

§ They already exist for
§ CMS offline software (CMSSW)
§ ATLAS/LHCb framework (Gaudi)

§ Let’s have a look at an example
workflow
§ A slice of the LHCb reconstruction
§ Only the low level objects of the

vertex locator (VELO) This part of
the detector LHCb detector

CERN School of Computing 2022

SW Design in the Many-Cores Era

41

The Velo Low-Level Reco DAG

CERN School of Computing 2022

SW Design in the Many-Cores Era

42

Take-Away Messages

§ Dealing with parallelism is inevitable
§ Software must exploit parallel hardware
§ But there are different levels of exposure to parallelism

§ High energy physics has a history of parallelisation
§ However, at a rather naïve level
§ The next steps require a harder approach

§ Parallelisation can be exploited in multiple ways
§ Data parallelism and task parallelism

§ Amdahl’s and Gustafson’s laws give a handle for scaling behaviour

§ There is a clear strategy for parallelising HEP software
§ Use of a task-based approach

