
Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Tools and Techniques

Introduction

Tools you can use individually: Test frameworks, memory checkers

The size of the task: Building software for a collaboration

1

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

What do you need to do the job?

I need to calculate the sum of prime numbers in the 1st 100 integers:

This is quick, throw-away code
• Not well structured, efficient, general or robust
• I understand what I intended, because I wrote it just now

Already, I need an editor, compiler, linker, and probably a debugger

int sumPrimes() {
 int sum = 0;
 for (int i=1; i < 100; i++) { // loop over possible primes
 bool prime = true;
 for (int j=1; j < 10; j++) { // loop over possible factors
 if (i % j == 0) prime = false;
 }
 if (prime) sum += i;
 }
 return sum;
}

2

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

“Don’t worry, I’ll remember
why I wrote it that way.”

“The answer looks OK, lets
move on.”

“Does anybody know where
this value came from?”

“Your #%@!& code broke
again!”

3

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

My sample program is a pretty small project!

Projects come in different sizes

Size (arbitrary units)

Ef
fo

rt
 (

ar
bi

tr
ar

y
un

its
)

4

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

Size (arbitrary units)

Ef
fo

rt
 (

ar
bi

tr
ar

y
un

its
)

5

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Projects come in different sizes

My sample program is a pretty small project!
It can be done with a simple technique:

But that won’t solve larger problems well

6

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

7

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Projects come in different sizes

A larger project may need a different approach
• Those tend to require more effort up front

What do you do when your project grows?

Size (arbitrary units)

Ef
fo

rt
 (

ar
bi

tr
ar

y
un

its
)

Method 1
Method 2

8

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Ef
fo

rt
 (

ar
bi

tr
ar

y
un

its
)

Method 1
Method 2
Method 3

9

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Projects come in different sizes

If you’re trying to solve a really large problem:

Size (arbitrary units)

Ef
fo

rt
 (

ar
bi

tr
ar

y
un

its
)

Method 1
Method 2
Method 3

10

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

What has all this to do with us?

Our systems tend to be complex systems
• HEP tends to work at the limit of what we know how to do

“If you only have a hammer, wood screws look a lot like nails” - ??
“If you only have a screwdriver, nails are pretty useless” - Don Briggs

11

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Larger projects have standard ways of doing things

To make it possible to communicate, you need a shared vocabulary
• Standards for languages, data storage, etc.

For people to work together, you have to control integrity of source code
• E.g. Git to provide versioning and control of source code

Just building a large system can be difficult
• Need tools for creating releases, tracking problems, etc.

12

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

But individual effort is still important!

You can’t build a great system
from crummy parts

You want your efforts to make a
difference

Good tools & technique can help
you do a better job

“Whatever you do may seem
insignificant, but it is most
important that you do it.” -
Gandhi

13

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Tools you can use

Knowing whether it works - JUnit, CppUnit, PyTest etc

14

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Toward an informed way of experimental working

Progress often comes from small, experimental changes
• Allows you to make quick progress on little updates
• Without risk to the big picture

How do you know those steps are progress?

15

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Testing

But don’t you see Gerson - if the particle is too small and too short-lived to
detect, we can’t just take it on faith that you’ve discovered it.”

16

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

The role of testing tools

Remember our original example: sum of primes in first 100 integers
• Simple routine, written in a few minutes
• “So simple it must be right”

int sumPrimes() {
 int sum = 0;
 for (int i=1; i < 100; i++) { // loop over possible primes
 bool prime = true;
 for (int j=1; j < 10; j++) { // loop over possible factors
 if (i % j == 0) prime = false;
 }
 if (prime) sum += i;
 }
 return sum;
}

17

Donald Knuth: “I have only proved it correct, I have not tested it”

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

The role of testing tools

Remember our original example:
• Simple routine, written in a few minutes
• “So simple it must be right”

• (Assume) valuable enough to reuse and extend

int sumPrimes(int n) {
 int sum = 0;
 for (int i=1; i < n; i++) { // loop over possible primes
 bool prime = true;
 for (int j=1; j < 10; j++) { // loop over possible factors
 if (i % j == 0) prime = false;
 }
 if (prime) sum += i;
 }
 return sum;
}

 But it’s not right...

18

"Study it forever and you'll still wonder. Fly it once and you'll know.”
- Henry Spencer

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this? Really carefully?

 std::cout << 2 << " " << sumPrimes(2) << std::endl;
 std::cout << 3 << " " << sumPrimes(3) << std::endl;
 std::cout << 11 << " " << sumPrimes(11) << std::endl;
 std::cout << 13 << " " << sumPrimes(13) << std::endl;

• Will you really check the answers? Thousands of them?

19

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this? Really carefully?

More realistic: Code test routines to provide inputs, check outputs

 bool passed = true;
 if (sumPrimes(2) != 2) {
 std::cout << " 2 failed with " << sumPrimes(2) << std::endl;
 passed = false;
 }

 if (sumPrimes(3) != 5) {
 std::cout << " 3 failed with " << sumPrimes(3) << std::endl;
 passed = false;
 }
 std::cout << (passed ? "All passed!" : "Failed!") << std::endl;

• Can become ungainly - imagine hundreds of developers

20

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How to test?

Simplest: Run it and look at the output
• Gets boring fast!
• How often are you willing to do this? Really carefully?

More realistic: Code test routines to provide inputs, check outputs
• Can become ungainly

Most useful: A test framework
• Can invest in great feedback
• Better control over testing

•CPPUNIT_ASSERT_EQUAL(0, sumPrimes(1));
•CPPUNIT_ASSERT_EQUAL(2, sumPrimes(2));

21

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Testing Frameworks: CppUnit, Junit, PyUnit et al

Each time you write a function:
public class SumPrimes {

 /** Return sum of primes up through n */

 public int sumPrimes(int n);

}

You should write a test:
 public void testOneIsNotPrime() {

 SumPrimes s = new SumPrimes();

 Assert.assertEquals(0, s.sumPrimes(1));

 }

Plus tests for other cases…
 public void testTwoIsPrime() {

 SumPrimes s = new SumPrimes();

 Assert.assertEquals(2, s.sumPrimes(2));

 }

Invoke the function

Check expected result

22

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.vdhpts8iospq

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1
Embed that in a framework

Gather together all the tests
 // define test suite

 public static Test suite() {

// all tests from here down in hierarchy

TestSuite suite = new TestSuite(TestFindVals.class);

return suite;

 }

Start the testing
• To just run the tests:
junit.textui.TestRunner.main(TestFindVals.class.getName());

And that’s it!

Invoke my test class

Junit uses class
name to find tests

23

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Running the tests
java TestSumPrimes
..
Time: 0.002

OK (2 tests)

java TestSumPrimes
..F
Time: 0.003
There was 1 failure:
1) testTwoIsPrime(TestSumPrimes)junit.framework.AssertionFailedError: check
sumPrimes(2) expected:<2> but was:<0>
 at TestSumPrimes.testTwoIsPrime(TestSumPrimes.java:23)

FAILURES!!!
Tests run: 2, Failures: 1, Errors: 0

 public void testTwoIsPrime() { // 2 is prime
 SumPrimes s = new SumPrimes();
 Assert.assertEquals("check sumPrimes(2)", 2, s.sumPrimes(2));
 }

24

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

CppUnit, PyUnit output similar

void TestSumPrimes::testTwoIsPrime() {
 CPPUNIT_ASSERT_EQUAL(2, sumPrimes(2));
}

TestSumPrimes.cpp:13: Assertion
Test name: TestSumPrimes::testTwoIsPrime
equality assertion failed
- Expected: 2
- Actual : 0

def test_sumPrimes(self):
 assert sumPrimes(1) == 0, "1 case"
 assert sumPrimes(2) == 2, "2 case"

==
FAIL: test_sumPrimes (__main__.TestSumPrimes)
--
Traceback (most recent call last):
 File "TestSumPrimes.py", line 11, in test_sumPrimes
 assert sumPrimes(2) == 2, "2 case"
AssertionError: 2 case

25

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Results of testing “SumPrimes”

Lesson 1: It’s not easy to understand somebody else’s code
• Assumptions, reasons are hard to see

“Is one a prime number?”
“Do I include the end point?” - was originally “sum of 1st 100 numbers”
Sometimes bugs are hidden by other ones

Lesson 2: Better structure would have helped
• Separate “isPrime” from counting loop to allow separate understanding

• Makes code checking for primes clearer, easier to test
• Lets you check counting loop independently

int sumPrimes(int n) {
 int sum = 0;
 for (int i=1; i < n; i++) { // loop over possible primes
 bool prime = true;
 for (int j=1; j < 10; j++) { // loop over possible factors
 if (i % j == 0) prime = false;
 }
 if (prime) sum += i;
 }
 return sum;
}

All prime numbers are
divisible by one, that’s OK

If you divide a number by
itself, the remainder is zero

Should “max” be
included or not?

26

1 is not a prime,
doesn’t include

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Why?

One test isn’t worth very much
• Maybe saves you a couple seconds once or twice

But consistently building the tests as you build the code does have value
• Have you ever broken something while fixing a bug? Adding a feature?

Tests remember what the program is supposed to do

• A set of tests is definitive documentation for what the code does
• Alternating between writing tests and code keeps the work incremental

Keeping the tests running prevents ugly surprises

• And it’s very satisfying!

Extreme Programming advocates
writing the tests before the code

• Large projects require structure
• Individuals report excellent results

XP claim
Traditional

27

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.b7fjpnxdmv6

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

The art of testing

What makes a good test?
• Not worth testing something that’s too simple to fail

2+2 really is 4

• Some functionality is too complex to test reliably
• Best to test functionality that you understand, but can imagine failing

If you’re not sure, write a test
If you have to debug, write a test
If somebody asks what it does, write a test

How big should a test be?
• A *Unit test is a unit of failure

When a test fails, it stops and moves to the next test
The pattern of failures can tell you what you broke

• Make lots of small tests to check what still works

What about existing code?
• Not practical to write a complete set of tests
• But you can write tests for new code, modifications, when you have a

question about what it does, when you have to debug it, etc
28

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Avoiding memory problems

29

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Memory State Machine

30

Read
Write

Write

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Memory-related problems

Read/write incorrectly
• Read from uninitialized memory
• Read/write via uninitialized pointer/ref
• Read/write past the valid range
• Read/write via a stale pointer/reference

E.g. after deallocating memory

Memory management mistakes
• Deallocation of (currently) unowned memory

Freeing something twice results in later overwrites
• Memory leaks

Forgetting to free something results in unusable memory

Often cause “really hard to find” bugs
• Crashes, incorrect results - traceback, dump don’t show cause
• Occur far from the real cause - breakpoints don’t help
• Often intermittent

Note: Language choices reduce these, but don’t make them go away!

31

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.dwvcizbspysp

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Standard Linux malloc has limited run-time checking option:
$ a.out

free(): invalid pointer 0x8049840!

Controlled by “MALLOC_CHECK_” environment variable
$ export MALLOC_CHECK_= n

Bit 0: print basic message (current default)
Bit 1: terminate and print more
Bit 2: print simplified messages
‘man mallopt’ for more info

Turning off can save several percent off time of some programs
“Hold my beer” approach to performance…

Allocator (malloc) can find some of these

32

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

`valgrind` as one of many tools:
$ valgrind ./five

...

==3029799== Invalid read of size 4

==3029799== at 0x400989: main (five.cpp:16)

==3029799== Address 0x5b4e0c0 is 0 bytes inside a block of size 4 free'd

==3029799== at 0x4C3A299: operator delete(void*, unsigned long)

==3029799== by 0x400972: main (five.cpp:14)

==3029799== Block was alloc'd at

==3029799== at 0x4C378C3: operator new(unsigned long)

==3029799== by 0x400953: main (five.cpp:10)

Why not always use it?
• Checking slows program significantly
• Too many errors?
• Only finds a limited number of error types

When to use it?
• Debugging a specific problem
• Run periodically to check for silent bugs
• As part of overall test routine

Tools can find even more of these

33

Read Upward

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Specialized tools - leak checking

Automated, unambiguous identification of leaks is difficult
• “forgot to free” vs “haven’t freed yet” vs “program’s ending, don’t bother”
• “can no longer reference any part” vs “no references to the beginning”

But reading the code is not a reliable method either
• A leak is a mistake of omission, not commission
• Often requires cooperation to leak memory:

Creator of allocated item may have no idea where it goes
Consumer may not realize responsible for deallocation

Doesn’t need to be deallocated
Expects some third party to deallocate

Several approaches:
• Print all allocate/free, and let the human reason it out
• List all allocated memory when the program ends, let human reason it out
• Provide a browser, let human reason about status during running
• Provide a suite of heuristics that can be tuned to the code’s structure

34

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How do these actually work?

Replacement libraries
• E.g. a more careful malloc, perhaps automatically linked
• Can’t check individual load/store instructions

Source code manipulation
• Preprocessor inserts instrumentation before compilation

Can know about scope, variable accesses, control flow
But requires source code, is language specific

Object code insertion / Instruction emulation
• Process object code to recognize & instrument load/store instructions

Can efficiently check every use of memory
Specific to both architecture and compiler, hard to port
Knows less about scope, variable accesses, control flow

35

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

A small catalog of available memory tools

Validity tests
• DMalloc - replacement library with instrumentation
• ElectricFence - checks for write outside proper boundaries
• AddressSanitizer - integrated with clang & gcc compiler to check operations
• valgrind - instruction-by-instruction checking

Leak checkers
• Windows Leak Detector - runtime attach
• LeakTracer - compilation based
• Memprof
• MemCheck - part of Valgrind
• ccmalloc

Some IDEs have built-in tools

36

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.jemcg22wfy0u

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How do you use these?

Big-bang approach is incredibly depressing
• Many products have lots of (benign?) errors
• These can swamp your own efforts

Better: isolate your own code for initial checks
• Ties in with a test framework:

“Does it work as expected?”

• Check often, fix incrementally

You still have to test “in the wild”
• Many errors are due to poor interfaces
• Learn from these and fix them!

37

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

When Data Arrives

38

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Performance

“More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
stupidity” - W.A. Wulf

Perceived performance is what really matters
• Is the system getting the job done or not?
• Function of resources, efficiency, scope, etc.

Most people can only effect efficiency
• That’s why people like to tune their programs to make them more efficient
• But it might not be the best way to get improvement

People are expensive, often overloaded

But if you’re going to tune a program, you might as well do a good job

Reminder: Performance assumes correctness!
• You have to make sure the program still works after you tune it

39

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Performance

“More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
stupidity” - W.A. Wulf

Perceived performance is what really matters
• Is the system getting the job done or not?
• Function of resources, efficiency, scope, etc.

Most people can only effect efficiency
• That’s why people like to tune their programs to make them more efficient
• But it might not be the best way to get improvement

People are expensive, often overloaded

But if you’re going to tune a program, you might as well do a good job

Reminder: Performance assumes correctness!
• You have to make sure the program still works after you tune it

40

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Start by understanding the problem

“Show me what part is taking all the time!”
Need tools to get reliable performance info

Several ways to acquire data
• Your OS probably has high-level tools for checking machine status

time, top, lsof, vmstat
Tools available vary with OS type

• C/C++ performance measurement tools:
• gperftools, gprof, valgrind (cachegrind, callgrind)

• Java virtual machines can capture data at runtime
Several approaches:

• Periodic samples
Use the procedure stack in each sample to figure out what’s being done
Use statistical arguments to provide profiles

• Tracking call/return control flow
Captures entire behavior, even for fast programs
Requires instrumenting the code

• Processor-based instrumentation
Plus tools to make the data understandable

41

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.so1co78qtmfd

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Sampling data looks like this:
CPU SAMPLES BEGIN (total = 909) Sat Feb 12 13:45:46

rank self accum count trace method

 1 28.60% 28.60% 260 31 java/lang/StringBuffer.<init>

 2 26.51% 55.12% 241 18 java/lang/StringBuffer.<init>

 3 24.42% 79.54% 222 48 java/lang/StringBuffer.<init>

 4 4.62% 84.16% 42 21 java/lang/System.arraycopy

 5 3.96% 88.12% 36 49 java/lang/System.arraycopy

 6 3.85% 91.97% 35 36 java/lang/System.arraycopy

 7 0.66% 92.63% 6 33 com/develop/demos/TestHprof.makeStringInline

 8 0.44% 93.07% 4 47 java/lang/String.getChars

 9 0.33% 93.40% 3 23 java/lang/StringBuffer.toString

 10 0.22% 93.62% 2 25 java/lang/StringBuffer.append

 11 0.22% 93.84% 2 59 com/develop/demos/TestHprof.makeStringWithBuff

 12 0.22% 94.06% 2 50 com/develop/demos/TestHprof.makeStringWithLocal

 13 0.22% 94.28% 2 40 java/lang/StringBuffer.toString

 14 0.22% 94.50% 2 17 com/develop/demos/TestHprof.addToCat

 15 0.22% 94.72% 2 41 java/lang/String.<init>

 16 0.22% 94.94% 2 30 java/lang/StringBuffer.append

 17 0.22% 95.16% 2 7 sun/misc/URLClassPath$2.run

Now what?

42

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Now what?

What you have: How often some function was running
What you want: “Improve this place first”

Is this a poor algorithm?

Is this asking for too much work?

43

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Now what?

What you have: How often some function was running
What you want: “Improve this place first”

Which caller is asking for
all this work?

44

Something asking for too much work

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Tools to help understand performance info

Commercial performance tools tend to have powerful analysis features
• This is why people are willing to pay so much for them...

PerfAnal, gprof as low-end examples for exercises
Good for teaching, but better tools exist for real use

Gives four views of the program behavior
• Top down look

How is each routine spending its time

• Bottom up look
Who is asking this routine to spend time?

• Detail within each function by line number
How is time spent in each function?

including calls to others
not including calls, just this line

How can we localize how time is spent?

45

More

https://docs.google.com/document/d/1Jvb1zYRibzOw74VKnGsmTVfWkQcOxb_yc8JboebFDpA/edit#heading=h.so1co78qtmfd

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Top-down view of the program

How is the routine spending its time?

46

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Bottom-up view

Who is asking this routine to spend time?

47

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Even more detail…

Within a member function

48

Just This

All This

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

49

$ gprof -b a.out
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ns/call ns/call name
 46.92 0.06 0.06 62135400 0.98 0.98 step(unsigned int)
 39.10 0.11 0.05 499999 101.66 223.65 nseq(unsigned int)
 15.64 0.13 0.02 frame_dummy

 Call graph

granularity: each sample hit covers 2 byte(s) for 7.57% of 0.13 seconds

index % time self children called name
 <spontaneous>
[1] 84.6 0.00 0.11 main [1]
 0.05 0.06 499999/499999 nseq(unsigned int) [2]

 0.05 0.06 499999/499999 main [1]
[2] 84.6 0.05 0.06 499999 nseq(unsigned int) [2]
 0.06 0.00 62135400/62135400 step(unsigned int) [3]

 0.06 0.00 62135400/62135400 nseq(unsigned int) [2]
[3] 46.2 0.06 0.00 62135400 step(unsigned int) [3]

 <spontaneous>
[4] 15.4 0.02 0.00 frame_dummy [4]

Index by function name

 [2] nseq(unsigned int) [3] step(unsigned int) [4] frame_dummy

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

50

$ gprof -b -l a.out
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ns/call ns/call name
 19.17 3.21 3.21 step(unsigned int) (collatz.cpp:14 @ 400737)
 16.86 6.04 2.83 frame_dummy
 16.62 8.82 2.79 nseq(unsigned int) (collatz.cpp:28 @ 40077a)
 16.19 11.54 2.71 4291970508 0.63 0.63 step(unsigned int) (collatz.cpp:7 @ 400716)
 12.22 13.59 2.05 nseq(unsigned int) (collatz.cpp:30 @ 400786)
 5.52 14.51 0.93 nseq(unsigned int) (collatz.cpp:26 @ 40076d)
 4.55 15.27 0.76 nseq(unsigned int) (collatz.cpp:31 @ 400793)
 2.94 15.77 0.49 nseq(unsigned int) (collatz.cpp:28 @ 400797)
 2.24 16.14 0.38 step(unsigned int) (collatz.cpp:8 @ 400726)
 1.94 16.47 0.33 step(unsigned int) (collatz.cpp:10 @ 400730)
 1.43 16.71 0.24 49999999 4.78 4.78 nseq(unsigned int) (collatz.cpp:20 @ 400745)
 1.36 16.94 0.23 step(unsigned int) (collatz.cpp:16 @ 400743)
 0.18 16.97 0.03 nseq(unsigned int) (collatz.cpp:34 @ 400799)
 0.12 16.99 0.02 main (collatz.cpp:44 @ 4007c9)
 0.09 17.00 0.02 main (collatz.cpp:50 @ 4007ea)
 0.09 17.02 0.02 main (collatz.cpp:42 @ 400801)
 0.06 17.03 0.01 nseq(unsigned int) (collatz.cpp:24 @ 400768)
 0.06 17.04 0.01 main (collatz.cpp:46 @ 4007d6)

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

51

 Call graph

granularity: each sample hit covers 2 byte(s) for 0.06% of 17.04 seconds

index % time self children called name
 <spontaneous>
[3] 16.6 2.83 0.00 frame_dummy [3]

 0.03 0.00 49999998/4291970508 nseq(unsigned int) (collatz.cpp:26 @ 40076d
 2.68 0.00 4241970510/4291970508 nseq(unsigned int) (collatz.cpp:30 @ 4007
[5] 15.9 2.71 0.00 4291970508 step(unsigned int) (collatz.cpp:7 @ 400716) [5]

 0.24 0.00 49999999/49999999 main (collatz.cpp:44 @ 4007c9) [11]
[12] 1.4 0.24 0.00 49999999 nseq(unsigned int) (collatz.cpp:20 @ 400745) [12]

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

How do you use this?

Two approaches:
• Make often-used routines faster
• Call slow routines less often

But it has to stay correct!
• Start by working in small steps

52

Bob Jacobsen, UC Berkeley

Tools and Techniques Lecture 1

Goal: “An informed way of experimental working”

Find a way of doing good work

Use tools wisely

Think about what you’re doing

53

