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interest (m and g)

Marginal likelihood 
(likelihood integrated over nuisance parameters)

Prior (“a priori” assumption)
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𝒙 = 𝝑 =
𝛗𝟎

𝜸
𝐄𝐜𝐮𝐭

Particle physics in a nutshell: the search for 𝑝(𝝑|𝒙)

Bayes theorem: 

Evidence = ׬d𝜽 𝑝(𝒙|𝜽)
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Neural networks can approximate posteriors!

Neural Network 

𝝑 =
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A network learns to do approximations by example:
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A network learns to do approximations by example:

𝑝 𝝑𝟏 = 10, 1, 3 𝒙𝟏 = 0.2

𝒙1

𝑝 𝝑𝟐 = 5,2, 9 𝒙𝟐 = 0.1

𝑝 𝝑𝟑 = 1, 0.5, 4 𝒙3 = 0.07

𝑝 𝝑𝟒 = 3, 8, 7 𝒙𝟒 = 0.03

𝒙2

𝒙4

𝒙3
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A network learns to do approximations by example:

Neural Network 
Training

𝑝 𝝑𝟏 = 10, 1, 3 𝒙𝟏 = 0.2

𝒙1

𝑝 𝝑𝟐 = 5,2, 9 𝒙𝟐 = 0.1

𝑝 𝝑𝟑 = 1, 0.5, 4 𝒙3 = 0.07

𝑝 𝝑𝟒 = 3, 8, 7 𝒙𝟒 = 0.03

𝒙2

𝒙4

𝒙3

…

1313Gert Kluge                                                                           CERN School of Computing 2022



A network learns to do approximations by example:

… but this assumes that we can already calculate the posterior!

Neural Network 
Training

𝑝 𝝑𝟏 = 10, 1, 3 𝒙𝟏 = 0.2
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𝑝 𝝑𝟑 = 1, 0.5, 4 𝒙3 = 0.07

𝑝 𝝑𝟒 = 3, 8, 7 𝒙𝟒 = 0.03
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𝒙1 𝒙2
𝒙4

𝒙3

…

We can “trick” a network to learn the posterior implicitly 

𝒙5 𝒙6
𝒙8

𝒙7

…
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The network now has an implicit understanding of the posterior

Neural Network 
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The network now has an implicit understanding of the posterior

Neural Network 
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False

Mathematical trick

24

𝛗𝟎 = 𝟏𝟎
𝜸 = 𝟏
𝐄𝐜𝐮𝐭 = 𝟑

24Gert Kluge                                                                           CERN School of Computing 2022



The network now has an implicit understanding of the posterior

Neural Network 
Output

𝑝 𝝑 𝒙 =
𝑑

1 − 𝑑
𝑝(𝝑)

Black Box

𝒙 =

True𝝑 =

𝑑 𝜖 (0 , 1)

False

Mathematical trick

Vary this input
to scan the posterior
over parameter space

25

𝛗𝟎 = 𝟏𝟎
𝜸 = 𝟏
𝐄𝐜𝐮𝐭 = 𝟑

25Gert Kluge                                                                           CERN School of Computing 2022



The network now has an implicit understanding of the posterior

Neural Network 
Output

𝑝 𝝑 𝒙 =
𝑑

1 − 𝑑
𝑝(𝝑)

Black Box

𝒙 =

True𝝑 =

𝑑 𝜖 (0 , 1)

False

Mathematical trick

Vary this input
to scan the posterior
over parameter space

26

𝛗𝟎 = 𝟏𝟎
𝜸 = 𝟏
𝐄𝐜𝐮𝐭 = 𝟑

26Gert Kluge                                                                           CERN School of Computing 2022



Neural Ratio Estimation: some resources to get you started

• Original paper (to my knowledge) to introduce 
the concept: 

https://arxiv.org/abs/1903.04057

• B. K. Miller, A. Cole, P. Forr ́e, G. Louppe, and C. 
Weniger, “Truncated
marginal neural ratio estimation”.
https://arxiv.org/abs/2107.01214

• B. K. Miller, A. Cole, G. Louppe, and C. Weniger, 
“Simulation-efficient
marginal posterior estimation with swyft: stop 
wasting your precious time,”
https://arxiv.org/abs/2011.13951
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• SWYFT (a package under development that does 
NRE and more): https://github.com/undark-
lab/swyft

https://arxiv.org/abs/1903.04057
https://arxiv.org/abs/2107.01214
https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft


One take-away: 

• You may be able to do Bayesian parameter inference, without having to do impossible integrals, 
and without putting unrealistic constraints on your nuisance parameters. 
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One take-away: 

• You may be able to do Bayesian parameter inference, without having to do impossible integrals, 
and without putting unrealistic constraints on your nuisance parameters. 

• Basic requirements: 

1. It must be possible to efficiently simulate the experimental observations as a function of 
physical parameters (of interest and nuisance)

2. It must be possible for a neural network to adequately distinguish between “matching” 
and “non-matching” pairs of observations and input parameters. 
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Backup



Particle physics in a nutshell: find the values of some free parameters

𝜑 𝐸 = 𝜑0
𝐸

𝐸0

𝛾

𝑒−𝐸/𝐸𝑐𝑢𝑡

• Parameters of interest:
➢ Amplitude 𝜑0

➢ Spectral index 𝛾
➢ 𝐸𝑐𝑢𝑡
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+ poisson noise



Goal: Find the “probability-distributions” for the true parameter values 
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NRE is easy to implement without any knowledge of the underlying 
physics
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(as a function of parameters of interest 
and nuisance parameters)

Using gammapy
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NRE is easy to implement without any knowledge of the underlying 
physics

Workflow: 

Define a function that outputs a 
simulated observation

(as a function of parameters of interest 
and nuisance parameters)

Simulate enough observations to 
train a neural network

(according to a defined prior)

Train a neural network

Scan the parameter space using the 
neural network

Using gammapy

Using SWYFT [1,2]
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• The simulations implicitly 
contain the information on 
the relationship between 
parameters and observations
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Inference with NRE seems to be precise for the spectral fit 

• 10 000 simulations used in training

• 𝑝 𝝑 ~ uniform on log scale

• Live time = 50 hr
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The method seems particularly useful for ALP searches with gamma-telescopes

• Nuisance parameters:
➢ Amplitude
➢ Spectral index
➢ Cut-off energy
➢ Magnetic field configuration
➢ + 12 more related to 

configuration of NGC1275

• For ALP searches, the frequentist test statistic
does not obey Wilk’s theorem!

→ Monte Carlo simulations are necessary to relate the TS 
to a significance of detection or exclusion for each point 
in parameter space. 

→ Conventional computations are extremely expensive

The expected spectrum can be simulated using
gammapy and gammaALPs(by M. Meyer)

• Parameters of interest:
➢ Mass of ALPs, m
➢ ALP-photon coupling, g

E [GeV]



Preliminary results indicate the method is suitable for ALP searches

46

• 𝑝 𝝑 ~ uniform on log scale
• Live time = 50 hr

• No CR background
• No nuisance parameters
• Single magnetic field realization
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Preliminary results indicate the method is suitable for ALP searches

• (𝑚𝑡𝑟𝑢𝑒 , 𝑔𝑡𝑟𝑢𝑒) = (0,0)

• 𝑝 𝝑 ~ uniform on log scale
• Live time = 50 hr

• No CR background
• No nuisance parameters
• Single magnetic field realization
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