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Particle physics in a nutshell: the search for p(9|x)

Bayes theorem:

p(x|9)
p(x)

p(d|x) = p(9)
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Particle physics in a nutshell: the search for p(9|x)

Bayes theorem:
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Particle physics in a nutshell: the search for p(9|x)

Bayes theorem:

p(x[9)
J|x) = 9
p(J|x) (%) p(9)
y-ray events from NGC1275
% 10 = (pO
X = S o Il 19 = 'y
[| Ecut
T 10° 10° H
E [GeV]

|

107 107*®
@o [TeV "l ecm™2s71]

100.35 100.45
14

102 10°
Ecyt [TeV]

Gert Kluge CERN School of Computing 2022




Particle physics in a nutshell: the search for p(9|x)

Marginal likelihood

Bayes theorem: (likelihood integrated over nuisance parameters)
_ plx[9) —
p(I|x) = p(x) p(9) < Prior (“a priori” assumption)
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interest (m and g) Evidence = [ d@ p(x|0)
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Neural networks can approximate posteriors!

Black Box

Neural Network
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Neural networks can approximate posteriors!

Black Box

y-ray events from NGC1275
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Neural networks can approximate posteriors!

Black Box

y-ray events from NGC1275
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Neural networks can approximate posteriors!

Black Box
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A network learns to do approximations by example:

X1
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A network learns to do approximations by example:
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A network learns to do approximations by example:

X1 \
X2

y-ray events from NGC1275
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A network learns to do approximations by example:
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... but this assumes that we can already calculate the posterior!
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly
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We can “trick” a network to learn the posterior implicitly

True

The observations are
simulated according to
the parameter values

False

The parameter
values are chosen
independently from
the simulations
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We can “trick” a network to learn the posterior implicitly

True

The observations are
simulated according to
the parameter values

False

The parameter
values are chosen
independently from
the simulations
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Note: We have to draw all of the parameters of
interest from the prior distribution!

Also, the network must use the binary cross-
entropy as cost function.
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The network now has an implicit understanding of the posterior

Black Box

Neural Network
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The network now has an implicit understanding of the posterior

Black Box
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The network now has an implicit understanding of the posterior

Black Box
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The network now has an implicit understanding of the posterior

Black Box

__yray events from NGC1275
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The network now has an implicit understanding of the posterior

Black Box

__yray events from NGC1275
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The network now has an implicit understanding of the posterior
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Neural Ratio Estimation: some resources to get you started

e Original paper (to my knowledge) to introduce
the concept:
https://arxiv.org/abs/1903.04057 Joeri Hermans' Volodimis gy Gilles Louppe

Abstract ratio of posterior densities between consecutive states in the
Markov chain. This allows the posterior to be approximated
numerically, provided that the likelihood p(x | 8) and the
prior p(@) are tractable. We consider the equally common
and more challenging setting. the so-called likelihood-free
setup, in which the likelihood cannot be evaluated in a
reasonable amount of time or has no tractable closed-form
expression. However, drawing samples from the forward
model is possible.

Likelihood-free MCMC with Amortized Approximate Ratio Estimators

Posterior inference with an intractable likelihood
is becoming an increasingly common task in sci-
entific domains which rely on sophisticated com-
puter simulations. Typically, these forward mod-
els do not admit tractable densities forcing prac-

 B. K. Miller, A. Cole, P. Forre, G. Louppe, and C.
Weniger, “Truncated ot et o s e
marglnal neural ratlo eSt|mat|On”' intractabilitv of the likelihood and the mareinal
https://arxiv.org/abs/2107.01214

Jun 2020

* B. K. Miller, A. Cole, G. Louppe, and C. Weniger, * SWYFT (a package under development that does

“Simulation-efficient NRE and more): https://github.com/undark-
marginal posterior estimation with swyft: stop lab/swyft

wasting your precious time,”
https://arxiv.org/abs/2011.13951
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https://arxiv.org/abs/1903.04057
https://arxiv.org/abs/2107.01214
https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft

One take-away:

* You may be able to do Bayesian parameter inference, without having to do impossible integrals,
and without putting unrealistic constraints on your nuisance parameters.
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One take-away:

* You may be able to do Bayesian parameter inference, without having to do impossible integrals,
and without putting unrealistic constraints on your nuisance parameters.

* Basic requirements:

1. It must be possible to efficiently simulate the experimental observations as a function of
physical parameters (of interest and nuisance)

2. It must be possible for a neural network to adequately distinguish between “matching”
and “non-matching” pairs of observations and input parameters.
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Particle physics in a nutshell: find the values of some free parameters

y-ray events from NGC1275
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Goal: Find the “probability-distributions” for the true parameter values

100.45
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100.35
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3 107
Ly
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NRE is easy to implement without any knowledge of the underlying
physics
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NRE is easy to implement without any knowledge of the underlying
physics

Workflow:

Define a function that outputs a
simulated observation Using gammapy

(as a function of parameters of interest
and nuisance parameters)
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NRE is easy to implement without any knowledge of the underlying
physics

Workflow:

Define a function that outputs a

simulated observation Using gammapy
(as a function of parameters of interest
and nuisance parameters)

Simulate enough observations to

train a neural network
(according to a defined prior)
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NRE is easy to implement without any knowledge of the underlying
physics

Workflow:

Define a function that outputs a

simulated observation
(as a function of parameters of interest
and nuisance parameters)

Using gammapy

* The simulations implicitly

Simulate enough observations to . . .
: contain the information on
train a neural network

(according to a defined prior) the relationship between
parameters and observations
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NRE is easy to implement without any knowledge of the underlying
physics
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NRE is easy to implement without any knowledge of the underlying
physics

Workflow:
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neural network
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NRE is easy to implement without any knowledge of the underlying
physics

Workflow:

Define a function that outputs a

simulated observation
(as a function of parameters of interest
and nuisance parameters)

Using gammapy

* The simulations implicitly

Simulate enough observations to . . .
: contain the information on
train a neural network

(according to a defined prior) the relationship between

parameters and observations
Using SWYFT [1.2]

Train a neural network

Scan the parameter space using the
neural network

Gert Kluge MAGIC Collaboration meeting 2022



Inference with NRE seems to be precise for the spectral fit

* 10000 simulations used in training
*  p(Y9) ~ uniform on log scale

e Live time =50 hr

100.45

1079 107% 10935 10°45 102 10°
o [TeV 1 em™2s71] Y E.y [TeV]
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Inference with NRE seems to be precise for the spectral fit
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The method seems particularly useful for ALP searches with gamma-telescopes

Expected result assuming ALPs with given
mass m and coupling g (using gammaZALPs):

y-ray events from NGC1275
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Counts
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—— Expected for m=0 neV, g=0 x 10~ Gey -1
—— Expected for m=50 neV, g=0.5 x 10~ Gev™?
—— Expected for m=10 neV, g=3 x 10~ GeV™?

10! 10? 103 104 10®

E [GeV]

10!

The expected spectrum can be simulated using
gammapy and gammaALPs (by M. Meyer)
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The method seems particularly useful for ALP searches with gamma-telescopes

Expected result assu ming ALPs with given  Parameters of interest: * Nuisance parameters:
mass m and coupling g (using gammaZALPs): » Mass of ALPs, m > Amplitude
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The method seems particularly useful for ALP searches with gamma-telescopes

Parameters of interest: * Nuisance parameters:
Amplitude

Spectral index

Cut-off energy

Magnetic field configuration
+ 12 more related to
configuration of NGC1275

Expected result assuming ALPs with given

mass m and coupling g (using gammaALPs): » Mass of ALPs, m
» ALP-photon coupling, g

y-ray events from NGC1275
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For ALP searches, the frequentist test statistic
does not obey Wilk’s theorem!
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- Monte Carlo simulations are necessary to relate the 7S
to a significance of detection or exclusion for each point
in parameter space.
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- Conventional computations are extremely expensive

The expected spectrum can be simulated using
gammapy and gammaALPs (by M. Meyer)




Preliminary results indicate the method is suitable for ALP searches

* p(¥9) ~ uniform on log scale
* Live time =50 hr
* No CR background
* No nuisance parameters .
* Single magnetic field realization >
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Preliminary results indicate the method is suitable for ALP searches
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