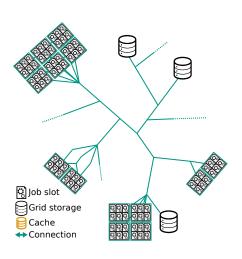
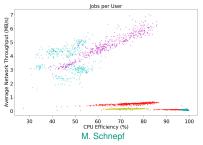


Modelling (parts of) the WLCG

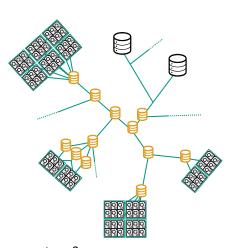

CERN School of Computing 2022, Kraków Maximilian M. Horzela | 07. September 2022

Distributed Storage and Compute Infrastructure in HEP


- Heterogeneous infrastructure (large/small grid sites, opportunistic resources, ...)
- Distributed data and compute resources
- Many data transfers across WAN
- → Need to establish an efficient CDN / information-centric network / data lake / ...

Use Available Resources Efficiently

- Network often limiting factor
- Correlation of network throughput and CPU efficiency



- Increase data locality: relieve WAN and shift transfer load to local network/connections via data caches
- Increase overall data throughput for a more efficient usage of compute resources

Asking Questions Involving Complex Structures

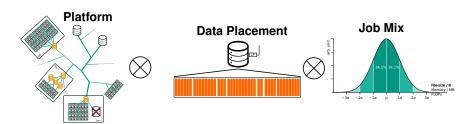
- Many caches, managed storages and compute resources
- Dynamically changing workloads and data access patterns (and resources)
- Complex scheduling systems with many parameters
- Real world systems are complex
- Unclear how to use caches
- → What are efficient realizations?

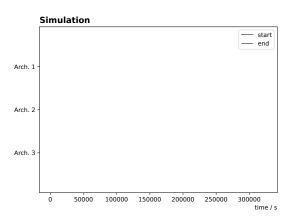
How to study these systems?

Planning the GRID Like 20 Years Ago

- Option 1: Performance measurements of test-beds not feasible (time and monetary costs) for big complex structures
- Option 2: Simulate applications on appealing infrastructure designs
- Already successful in the past: MONARC → WI CG
- MONARC(2) discontinued
- → Modern, accurate & scaleable simulator

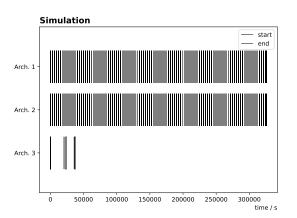
I. Legrand, H. Newman


Simulator Software


- SIMGRID: Library of low-level simulation abstractions for distributed systems (Actors using Platform through Activities)
- WRENCH: High-level building blocks (Services specifying) Activities)
- Addition of (HEP-)specific adaptions (e.g. job-, dataset- & workflow-model, XRootD, ...)

Application

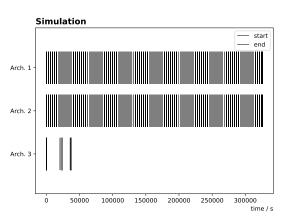
e.g.: What is a good analysis cluster?



- Compare three architectures:
 - Define the platforms for each scenario
 - Place the input-data
 - Create a job mix of 5000 analysis jobs

Application

e.g.: What is a good analysis cluster?

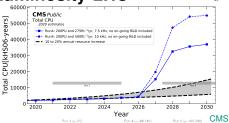


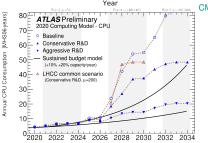
- Compare three architectures:
 - Define the platforms for each scenario
 - Place the input-data
 - Create a job mix of 5000 analysis jobs
 - Compare the performance

Application

e.g.: What is a good analysis cluster?

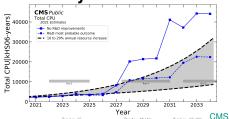
- Compare three architectures:
 - Define the platforms for each scenario
 - Place the input-data
 - Create a job mix of 5000 analysis jobs
 - Compare the performance

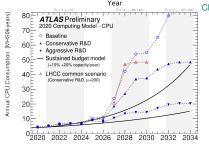

⇒ Extend to: How do we optimize the grid?


Backup

Computing for the High-Luminosity-LHC

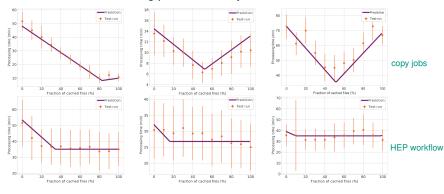
- Clear challenge
 - Expect exploding demand for computing infrastructure
- Proposed solutions
 - Software improvements
 - Integration of additional non-HEP resources
 - Optimization of existing computing model




Year ATI AS

Computing for the High-Luminosity-LHC

- Clear challenge
 - Expect exploring demand for computing infrastructure
- Proposed solutions
 - Software improvements
 - Integration of additional non-HEP resources
 - Optimization of existing computing model
- Pursuing further efficiency improvements and making additional resources available



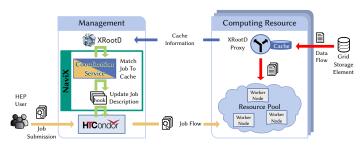
Year ATLAS

Operation of Individual Local Caches

- Tested on several clusters with different workflows
- Used to measure caching performance by M. Sauter

ETP High Throughput Nodes

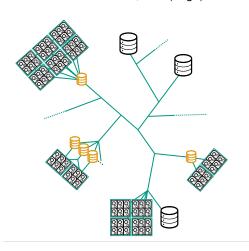
TOPAS (KIT Tier 3)


NEMO Freiburg

Simple caching scenarios work

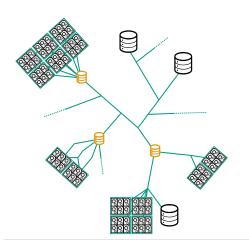
Ideas for an Efficient CDN for HEP

- Wildly distributing jobs on distributed infrastructure might lead to
 - Significant amount of jobs not benefiting from cached data
 - Redundant replicas of data wasting cache space
- ⇒ Actively coordinate jobs?
 - Latest technology for cache-aware scheduling: NaviX



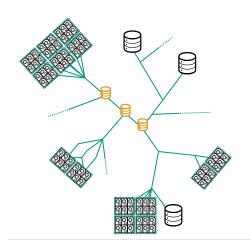
Proof-of-concept: Used in production on a local Tier-3 cluster at KIT

Where, how (large) and when do we place caches?



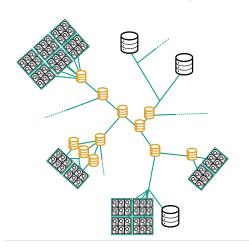
In closest vicinity to processing sites → minimize WAN load

Where, how (large) and when do we place caches?



■ Deeper inside network → benefit more sites, distribute network loads to WA(ish)N and LA(ish)N

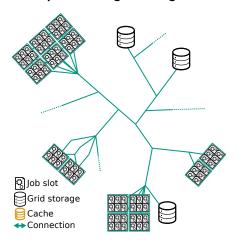
Where, how (large) and when do we place caches?



Inside network to maximize amount of profiting sites

A Content Delivery Network for HEP

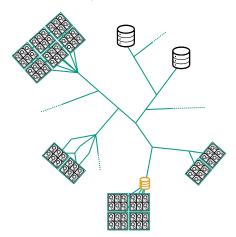
Where, how (large) and when do we place caches?



- In closest vicinity to processing sites → minimize WAN load
- Deeper inside network → benefit more sites, distribute network loads to WA(ish)N and LA(ish)N
- Inside network to maximize amount of profiting sites
- Combination of all

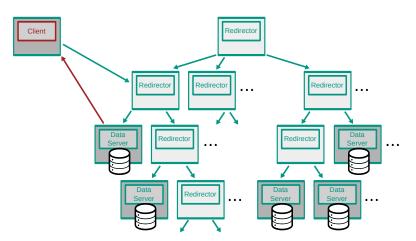
A Content Delivery Network for HEP

Can we even **replace managed storage** with caches ...?



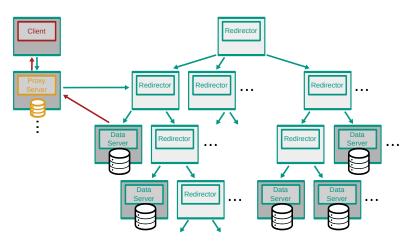
Replace an expensive managed storage ...

A Content Delivery Network for HEP


... or just one cache?

... with a non-crtitical and cheap cache system

Any Data, Anytime, Anywhere: XRootD

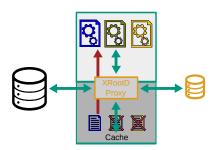


- XRootD is an established technology in HEP
- On client side, data can be accessed independent of location

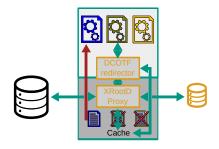
Any Data, Anytime, Anywhere: XRootD

Transparent usage of proxy servers to cache data already included in XRootD

Caching Tools



XCache


Plugin for the XRootD proxy file caching

DCOTF

- Disk-Caching-On-The-Fly
- Extension of XCache

File access via XRootD proxy

Direct access to local file system

Simulator Software

- MONARC(2) is discontinued → Need modern solution
- SIMGRID: Library of low-level simulation abstractions for distributed systems in gen. (Actors using Platform through Activities)
- WRENCH: High-level building blocks (Services specifying Activities)
 - Wide user base
 - Validated accuracy
 - Very supportive and highly motivated developers, special thanks to Henri Casanova, University of Hawai 'i
- Addition of (HEP-)specific adaptions (e.g. job-, dataset- & workflow-model, XRootD)
- ⇒ Reimplementation of Monarc-inspired simulator tool based on Wrench

SIMGRID and WRENCH

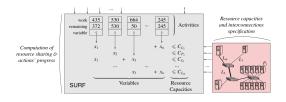
SIMGRID

- Library of exposed functions (low-level simulation abstractions) written in C++
- Framework for building own simulator of distributed computer systems in C/C++, Python or Java
- Accurate (validated), scalable (low ratio of simulated versus real time) and expressive (able to simulate arbitrary platforms, applications and execution scenarios)
- Large user-base

WRENCH

High-level simulation abstractions based on SIMGRID

SIMGRID Engine


- "Actors" using "Platform" of resources through corresponding "Activities"
- "Activities" have both qualitative (synchronization between actors / locking) and quantitative (consumption of resource capacities) components
- "Actor" management by a central actor, called "Maestro", in scheduling round:
 - Assign control flow to each actor not blocked on a simcall, start sub-scheduling:
 - Actors execute activities and return intermediate simcalls that take no time to execute (e.g. spawn new actor)
 - Repeat until all actors return a blocking simcall or terminate
 - Advance time to that point at which first next activity terminates
 - Start new scheduling round

Context switching between actor and maestro is highly optimized

SIMGRID Resource-Activity Model

- Same analytical flow-model for simulation of network, storage and CPU
- Activities defined by a total and remaining amount of work to accomplish

- Resource capacity of resource C_r is assigned to a set of concurrent activities A at time t_0 is determined by solving max $[\min_{a \in A} (\rho_a)]$ under constraints $\sum_{a \in A} \rho_a \leq C_r$
- Simulation time is advanced to time at which first activity is completed t_1

- Max-min of *n* resources sharing a single resource *r* leads to fair share $\frac{C_r}{a}$ assigned to each activity
- For CPU-shares optional scaling by normalized priorities possible
- Fair sharing of storage I/O bandwidth plus additional fixed initial delay at simulation time advance due to seek time

SIMGRID TCP Network Model

- TCP doesn't show Max-Min fairness, two options:
- Packet level network simulator ns-3
- Improved flow-level network model with
 - modified constraints accounting for RTT unfairness of TCP and throughput degradation due to reverse traffic [DOI:10.1145/2517448]
 - and improved execution time

$$T = \alpha I_f + \frac{V}{\beta \rho_f}$$

with TCP version specific parameters α and β tuned by packet-level simulation valid for transfers of data of size > 100KiB

SIMGRID Platform Description

 Simulated hardware platform consisting of clusters of hosts. storage resources, links, routes, etc.

```
<platform version="4.1">
    <zone id="ASO" routing="Full">
        <!-- The host on which the WMS will run -->
        <host id="WMSHost" speed="10Gf" core="1">
            <disk id="hard drive" read bw="100MBps" write bw="100MBps">
                prop id="size" value="5000GiB"/>
                cprop id="mount" value="/"/>
        </host>
        <!-- The host on which the BareMetalComputeService will run -->
        <host id="ComputeHost" speed="1Gf" core="10">
           cprop id="ram" value="16GB" />
       </host>
       <!-- A network link that connects both hosts -->
        <link id="network link" bandwidth="50MBps" latency="20us"/>
       <!-- WMSHost's local "loopback" link -->
        <link id="loopback WMSHost" bandwidth="1000EBps" latency="0us"/>
        <!--ComputeHost's local "loopback" link -->
        <link id="loopback_ComputeHost" bandwidth="1000EBps" latency="0us"/>
        <!-- Network routes -->
        <route src="WMSHost" dst="ComputeHost">
           link ctn id="network link"/>
        <!-- Each loopback link connects each host to itself -->
        <route src="WMSHost" dst="WMSHost">
           <link ctn id="loopback WMSHost"/>
        <route src="ComputeHost" dst="ComputeHost">
           <link ctn id="loopback ComputeHost"/>
        </route>
    </zone>
</platform>
```

WRENCH Services

- Adds high level abstractions ("services") on top of SIMGRID
 - Compute services knows how and where to compute tasks, e.g. bare-metal, cloud, virtualized cluster, batch-scheduled cluster platforms and HTCondor
 - Storage services know how to store and give access to files
 - File-registry services know where files reside
 - Network proximity services monitor network and maintain database of host-to-host distances
 - Energy-meter services periodically measure energy-consumption of all resources
- All services introduce their own messages (activities) and according payloads

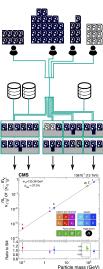
WRENCH Workflow-Management-System

- Workflow: collection of tasks with file- and task-dependencies
- "Workflow Management Systems" provide mechanisms for executing workflow applications via jobs (cluster of tasks combined with file location information)

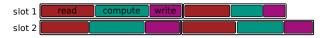
Algorithm 1 Blueprint for a WMS execution	
1:	procedure Main(workflow)
2:	Obtain list of available services
3:	Gather static information about the services
4:	while work flow execution has not completed/failed do
5:	Gather dynamic service/resource information
6:	Make data/computation scheduling decisions
7:	Interact with services to enact decisions
8:	Wait for and react to the next event
9:	end while
0:	return
1:	end procedure

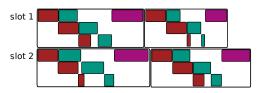
- A WMS-API provides the interface for the user to simulate a workflow
- In future workflow part factorized out of WRENCH

HTCondor Compute-Service


- Starting HTCondor-compute-service spawns a central-manager and a negotiator service
 - Compute service: entry point for job submission to WMS
 - Central manager: management of available resources (pool of bare-metal or batch-compute-services), manages job submission, initializes negotiation cvcles
 - Negotiator: matches jobs to resources (based on #CPU and memory requirements)
- Actual task execution and resource allocation on host managed by matched compute-service
- Main focus so far on simulation of grid-universe jobs, need to be reviewed in the future to include ClassAds

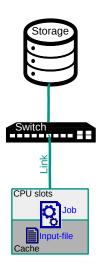
Designed to simulate HEP workflows

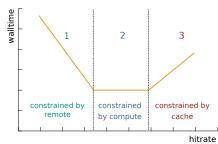

- Define workflow of jobs with certain characteristics (FLOP, Memory, In-&Output-files)
- Define platform (network & hosts) with certain characteristics (N_{core}, CPU-speed, RAM, disk, bandwidth) and roles (worker, storage, cache, scheduler, ...)
- Instantiate input-files
- Start the simulation!
 - Jobs are scheduled and run
 - Input-files are streamed and cached
 - Caches evict files if necessary
 - Job dynamics are monitored



Copy jobs

Sequentially read, compute and write

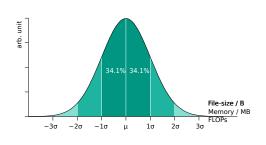

Streaming jobs

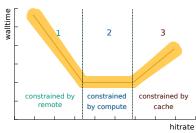


- Can concurrently read and compute (enabled by XRootD in HEP)
- → More compact pattern and reduced duration

Wall-time estimation T. Feßenbecker:

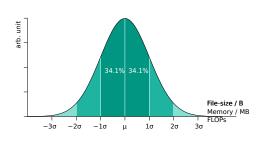
$$t_{ ext{wall}}(t) = \max\left(rac{V\cdot(1-h)}{b_{ ext{remote}}(t)}, t_{ ext{CPU}}, rac{V\cdot h}{b_{ ext{cache}}(t)}
ight)$$

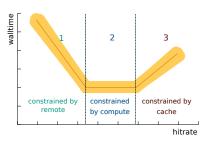

Hit-rate:


$$h = \frac{\text{input-file-sizes on cache}}{\text{all input-file-sizes}}$$

Bathtub ⊗ Job Characteristics

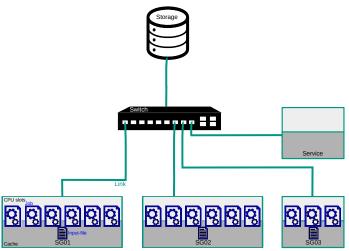
Sampling job characteristics from a (truncated) Gaussian distribution




- ⇒ pdf_{Job} ⊗ Bathtub = Smeared Bathtub
- Is this the whole story?

Bathtub ⊗ **Job Characteristics**

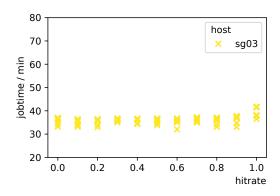
Sampling job characteristics from a (truncated) Gaussian distribution

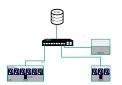


- $\Rightarrow pdf_{Job} \otimes Bathtub = Smeared Bathtub$
- Is this the whole story? → Didn't include the influence of other entities!

Hypothetical Test Platform

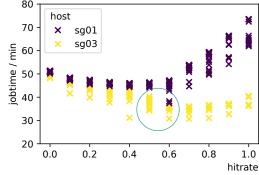
Same caches & network speeds, different slot numbers & speeds


One Worker


- Starting as many jobs as slots available
- Preparing fixed hitrate at simulation start

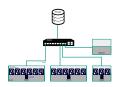
- Nice smeared "Bathtub-Type-2&3"
- Small number of iobs → network still fast enough

Two Workers

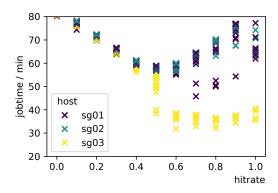


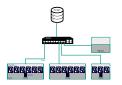
80

number of slots

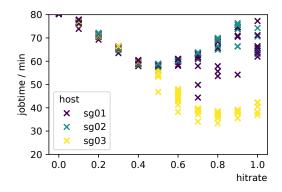

- Above N_{iob} threshold \rightarrow Network throttling
- Unexpected dip at pivot point for sg03

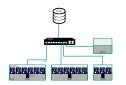
Adding host sg01 with slower CPU and higher


Three Workers

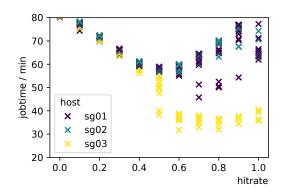

Adding host sq02 identical to sq01

- Nice "Bathtub-Type-1&3" for sg01 and sg02
- More pronounced inter-machine influence (network throttling & dip)
- What is the dip?


Three Workers


Setting CPU-speeds on all hosts to same value

- Nice "Bathtub" for all hosts
- The dip is gone


Three Workers

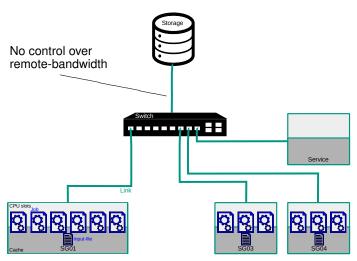
- Throughput limited by CPU/cache for → More throughput for sg03
- Different CPU-speed of sg03 decouples the host

Simulator prediction: Interference between jobs due to network is not negligible!

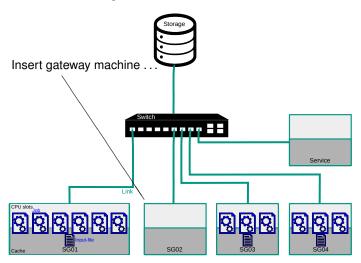
Calibration/Validation Strategy

Real-world system:

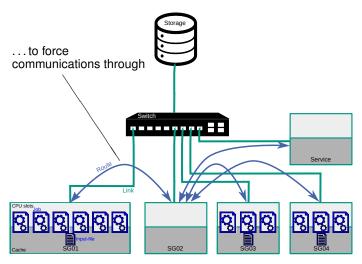
- Assemble real test systems with a control on parameters
- Start collections of jobs with known/steerable characteristics
- Measure job dynamics

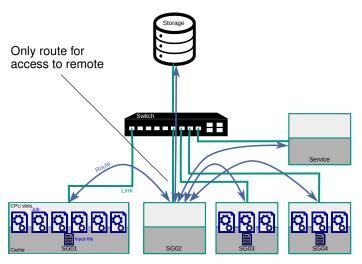

Simulation:

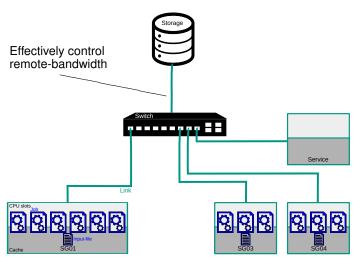
- Define platforms as close to the test-system as reasonable
- Start workloads of jobs with similar iob characteristics
- Read-out job dynamics



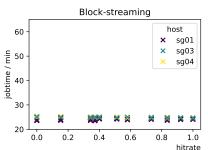
Tune the simulation parameters until simulation fits measurements Combine differently configured measurements to learn something about the system







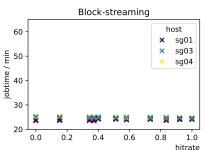
Benchmark Jobs



- Exact replications of the same data analysis job
 - Same executable, executing data transformation and reduction
 - Read same input-files via XRootD in the same order
 - Fraction of input-files read from local cache
 - Number of jobs matches number of available slots
- Input-files on remote storage and prefetched on caches
- Only metadata transfer at stage-out
- Job monitoring part of the executable

Setting gateway machine's network interface to 10 Gbit s⁻¹

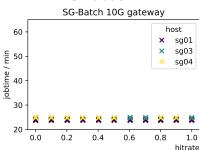
Measurement



Clearly CPU limited workflow, no I/O throttling

Setting gateway machine's network interface to 10 Gbit s⁻¹

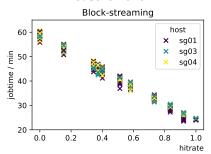
Measurement


- Clearly CPU limited workflow, no I/O throttling
- → Tune CPU speeds in simulation

Setting gateway machine's network interface to 10 Gbit s⁻¹

Measurement Block-streaming host 60 sq01 sq03 jobtime / min 50 sq04 40 30 20 0.0 0.2 0.4 0.6 0.8 1.0 hitrate

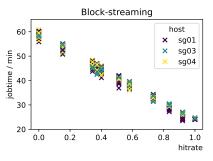
Simulation

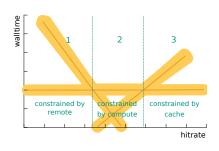


- Clearly CPU limited workflow, no I/O throttling
- Tune CPU speeds in simulation

- Lower gateway machine's network interface to 1 Gbit s⁻¹, else the same
- Reuse condensed information from previous measurement

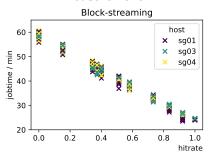
Measurement




Limited by I/O via remote network

- Lower gateway machine's network interface to 1 Gbit s⁻¹, else the same
- Reuse condensed information from previous measurement

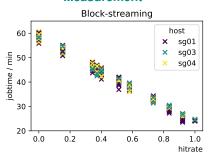
Measurement



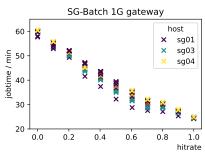
- Limited by I/O via remote network
- Not compatible with "Bathtub" model!
- ⇒ Why? Synchronized file read actions lead to overhead!

- Lower gateway machine's network interface to 1 Gbit s⁻¹, else the same
- Reuse condensed information from previous measurement

Measurement



- Limited by I/O via remote network
- Simulate exactly duplicated jobs with synchronized file reads

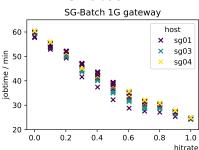


- Lower gateway machine's network interface to 1 Gbit s⁻¹, else the same
- Reuse condensed information from previous measurement

Measurement

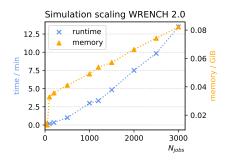
Simulation

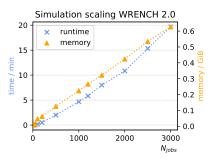
- Limited by I/O via remote network
- Simulate exactly duplicated jobs with synchronized file reads


Calibrated Simulation

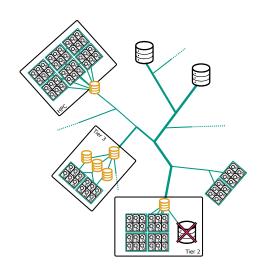
Naive real world platform parameter values not necessarily "true"

Measurement Block-streaming host 60 sq01 × sq03 jobtime / min 50 sq04 40 30 20 0.2 0.4 0.6 0.8 1.0 0.0 hitrate


Simulation


- Elaborate calibration of simulation parameters (fine-tuning involved)
- Good analogue of a real-world computing system via simulation
- The simulator is able to reproduce reality!

Memory and Runtime-Scaling WRENCH 2.0 Karlsruhe Institute of


Streaming-jobs with 0.1 GB blocks

- Streaming increases simulation resource consumption and runtime
- But $\mathcal{O}(100)$ k jobs not beyond reach (\Leftrightarrow 20 GB memory, 15 h runtime)
- Further optimizations ongoing in particular for memory

Ongoing and Planned

- Comparison of large scale platforms with(-out) caches as proof-of-concept
- Detailed XRootD simulation (In progress, Hawaii) and comparison with my naive streaming and source-identification implementations
- Automatic simulator calibration methods, e.g. NN (In progress, Hawaii)