
Martin Cejp

CERN SY-EPC-CCS

(Electrical Power Converters group / Converter Controls Software)

CERN School of Computing 2022, Kraków, Poland

Structured logging
for improved user experience
with minimum additional
infrastructure

• Electromagnets to steer/deflect beam → driven with DC or AC current → need for
electrical power converters

• Service for remote firmware upgrade

• Non-interactive: controlled through SQL DB
• Bulk deployments

• 5000+ converters x ~5 programmable cards each x 1-2 campaigns per year

• Limited time for upgrade campaigns

→ Essential to have clear and precise feedback from updater service to power engineer

Background

Status feedback

Power engineer

Firmware build
Configuration

database
Modular power converterUpdater service

Plaintext vs structured logging
• Text logs with fixed format (timestamp, severity, module, message)

• Cheap to add – logger.warning(“Reply received %d seconds too late”, delay)

• User-unfriendly (remember: power engineer ≠ controls expert)

• Logs usually stored somewhere on NFS or accessed via heavy-weight tool like Kibana

• Becomes impossible to follow when multiple tasks are processed in parallel

[2021-10-06 13:05:55] [INFO](area_worker): FgcWorker(Test_Validation4): job RPAAO.866.02.ETH8 removed from tasks
[2021-10-06 13:06:00] [DEBUG](area_worker): RPAAO.866.02.ETH8 not in TODO job list
[2021-10-06 13:06:00] [INFO](area_worker): (Test_Validation) job RPAAO.866.02.ETH8 added to queue
[2021-10-06 13:06:00] [DEBUG](fgc_job_utils): RPAAO.866.02.ETH8: expected_data;

slot: 2
board: VS_STATE_CTRL

devices:
DB -> Device(Device='DB', Variant='DOWNLDBOOT_3', Var_Rev='303', API_Rev='303')
MF -> Device(Device='MF', Variant='LPS4Q_130', Var_Rev='304', API_Rev='304')

slot: 5
board: VS_REG_DSP

devices:
DB -> Device(Device='DB', Variant='DOWNLDBOOT_3', Var_Rev='304', API_Rev='304')

DEVICE_2 -> Device(Device='DEVICE_2', Variant='LPS4Q_130', Var_Rev='301', API_Rev='301')
MF -> Device(Device='MF', Variant='LPS4Q_130', Var_Rev='301', API_Rev='301')

[2021-10-06 13:06:00] [ERROR](area_worker): FgcWorker(Test_Validation4): failed to reprogram RPAAO.866.02.ETH8: err 39 not ready
[2021-10-06 13:06:00] [INFO](area_worker): FgcWorker(Test_Validation4): job RPAAO.866.02.ETH8 removed from tasks

Plaintext vs structured logging
• Structured

{“timestamp”: “2021-10-06T13:05:55”,

“severity”: “INFO”,

“message”: “job RPAAO.866.02.ETH8 removed from tasks”,

“type”: “job_removed”,

<message-specific attributes>

}

• 1 entry per line -> “JSONL” format
• Retains some advantages of plain text: new entries can be simply appended at end

(contrast with classic JSON)

• Rotate files same way as text logs (daily/hourly)

• Admittedly even worse to read than plaintext, but

• Easy to parse + transform → we can provide a domain-specific, intuitive view to users

additional attributes depend on entry type

How to display it?
• Custom web app – Flask/Node/Go/Java/…?

• ElasticSearch–Logstash–Kibana?

• Store & retrieve from a SQL database?

• All too complex! Our goal is zero infrastructure

• Take advantage of existing NFS*→HTTP
bridge

• Use to host both webpage + logs

• Self-contained HTML page, JSONL data loaded
by client-side script

* NFS = Network File System. Imagine a more primitive, 1990s
version of AFS/EOS/Ceph, used heavily in the accelerator sector

Self-contained
webpage

Log files
(1 per day)

User
navigates

JavaScript
fetch()

Power engineer

NFS

What it looks like

Each row corresponds
to structured log entry
(10+ lines in old
plaintext logs)

Error codes not explicitly handled by log viewer
show up with degraded UX but no information is
lost

Most recent first, entries grouped by system

Guiding principle:
Highlight changes carried out & potential problems; de-emphasize “background” state Data updated every ~15 seconds

Summary
• Treat your users to a nice UX

• Reusing existing infrastructure can reduce maintenance burden, enabling
functionality that would otherwise be deemed not worth the complexity

• This project was a bottom-up initiative motivated by seeing user suffering (+ JIRA tickets)
first-hand

• GitLab CI is another example of an extremely versatile, hosted tool

• Question complexity that we’re told to take for granted
• JS/CSS frameworks

• Web application platforms

• Elaborate build tools, microservice architectures, heavyweight databases …

Controls experts can tend
to other business

Power engineers
are empowered

